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Abstract. We analyze the dynamics of a 3D granular packing composed of particles of irregular polyhedral
shape confined inside a rectangular box with a retaining wall subjected to horizontal harmonic forcing. The
simulations are performed by means of the contact dynamics method for a broad set of loading parameters.
We explore the vibrational dynamics of the packing, the evolution of solid fraction and the scaling of dy-
namics with the loading parameters. We show that the motion of the retaining wall is strongly anharmonic
as a result of jamming and grain rearrangements. It is found that the mean particle displacement scales
with inverse square of frequency, the inverse of the force amplitude and the square of gravity. The short-
time compaction rate grows in proportion to frequency up to a characteristic frequency, corresponding to
collective particle rearrangements between equilibrium states, and then it declines in inverse proportion to

frequency.

PACS. 83.80.Fg Granular solids — 45.70.Cc Static sandpiles; granular compaction

1 Introduction

The dynamics of dense granular materials subjected to
vibrations involves collective phenomena resulting from
kinematic constraints (steric exclusions, boundary and fi-
nite size effects, ...) and energy dissipation [1]. Well-
known examples of the vibration-induced phenomena are
compaction, convective flow, size segregation and stand-
ing wave patterns at the free surface[2-8|. Three different
states can be distinguished depending on the intensity and
frequency of vibrations: 1) Gas-like or fluidized state: The
rate of energy input is such that there are no enduring
contacts between particles and the material behaves as a
dissipative gas [9,11,17]. 2) Solid-like state: Vibrational
energy propagates through the network of enduring con-
tacts between particles and the material undergoes slow
rearrangements and progressive compaction [12,21,10,20].
3) Liquid-like state: Both particle migration and enduring
contact networks are involved in the dynamics and various
collective effects can be observed [3,18,13,5,19].
Vibro-compaction is the main feature of the solid-like
state. Most investigated systems are unconfined granular
beds (with a free surface) subjected to vertical vibrations.
The vibrations behave as a source of randomness allow-
ing the system to explore metastable configurations and
to reduce its potential energy. There is, however, another
mechanism which prevails in the case of confined granular
materials. It is well-known that under cyclic straining, a
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granular material accumulates plastic deformation and the
solid fraction tends to a maximum value depending on the
material. This phenomenon is sometimes called ” granular
ratcheting” due to the irreversible character of compaction
under cyclic loading [14-16]. In both confined and uncon-
fined geometries, the solid fraction evolves as a logarithmic
function of the number of cycles. In most work reported
on vibrated granular media, the collective dynamics of the
particles and the influence of various parameters related
to the material or the driving system have not been in-
vestigated in all details. Moreover, in nearly all studies,
spherical or nearly spherical particles in 3D or disks or
polygons in 2D have been used [14,33,16].

In this paper, we present a numerical investigation of
the dynamics and short-time compaction of a system of ir-
regular polyhedral particles confined inside a rectangular
box with a retaining wall subjected to horizontal harmonic
loading. This system is different from nearly all experi-
mental systems investigated under horizontal vibrations
since the packing remains confined inside a box, so that
the gravity plays little role during the inward motion of
the retaining wall. This geometry is similar to that used in
various industrial applications such as the casting of fresh
concrete where efficient vibro-compaction of dry and wet
granular materials represents a crucial issue [22,23]. The
tamping operation on railway ballast is another interest-
ing case where vibrating arms penetrate the ballast layer
and squeeze the particles under the railway track in order
to restore the initial geometry of the track distorted as
a result of ballast settlement[24,25]. With the increase of
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circulation speed, a better understanding of the physics of
compaction is important for long time stability of ballast.

We are interested here in the evolution of the packing
in the course of harmonic loading, the short-time com-
paction (during the first cycles) and the scaling of the dy-
namics with loading parameters. We used discrete-element
numerical simulations by means of the contact dynamics
method in 3D with rigid irregular polyhedral particles [26—
28,34,29]. The system is explored for a broad set of loading
parameters including the frequency and amplitude of the
harmonic driving force. A similar study was recently per-
formed in 2D with polygonal particles [33]. The passage
from 2D to 3D from a purely numerical point of view in-
volves numerical handling of particles of polyhedral shape
and a higher numerical efficiency making 3D simulations
over many cycles and for varying parameters possible. In
this paper, we will revisit the same phenomenology as in
2D for irregular polyhedral particles. This shows that in
granular materials the dynamics is not sensitive to space
dimensionality although the influence of particle shape
and the details of structural organization can only be ap-
preciated in a 3D geometry.

We begin with an introduction to 3D contact dynamics
method as applied to polyhedral particle shapes and the
numerical procedures. Then, we present in three sections
the dynamics of the packing, the evolution of solid fraction
and scaling with loading parameters.

2 Numerical method

The simulations were carried out by means of the contact
dynamics (CD) method with irregular polyhedral parti-
cles. The CD method is a discrete element approach for
the simulation of nonsmooth granular dynamics with con-
tact laws expressing mutual exclusion and dry friction be-
tween particles without elastic or viscous regularization
[26-28,34]. Hence, this method is particularly adapted for
the simulation of perfectly rigid particles. Nonsmoothness
refers to various degrees of discontinuity in velocities aris-
ing in a system of rigid particles. In this method, the
equations of motion for each particle are formulated as
differential inclusions in which velocity jumps replace ac-
celerations [27]. The unilateral contact interactions and
Coulomb friction law are treated as complementarity rela-
tions or set-valued contact laws. The time-stepping scheme
is implicit but requires explicit determination of the con-
tact network. Due to implicit time integration, inherent in
the CD method, this scheme is unconditionally stable.
At a given step of evolution, all kinematic constraints
implied by lasting contacts and the possible rolling of some
particles over others are simultaneously taken into ac-
count, together with the equations of dynamics, in order to
determine all velocities and contact forces in the system.
This problem is solved by an iterative process pertain-
ing to the non-linear Gauss-Seidel method which consists
of solving a single contact problem, with other contact
forces being treated as known, and iteratively updating
the forces and velocities until a convergence criterion is
fulfilled. The iterations in a time step are stopped when

the calculated contact forces are stable with respect to
the update procedure. To check convergence we thus use
the relative variation of the mean contact force between
two successive iterations. We require this relative varia-
tion to be below a given value which sets the precision
of the calculation. In this process, no distinction is made
between smooth evolution of a system of rigid particles
during one time step and nonsmooth evolutions in time
due to collisions or dry friction effects. The uniqueness of
the solution at each time step is not guaranteed by CD
method for perfectly rigid particles. However, by initializ-
ing each step of calculation with the forces calculated in
the preceding step, the set of accessible solutions shrinks
to fluctuations which are basically below the numerical
resolution. In this way, the solution remains close to the
present state of forces.

For our simulations, we used the LMGC90 which is
a multipurpose software developed in Montpellier, capa-
ble of modeling a collection of deformable or undeformable
particles of various shapes (spherical, polyhedral, or polyg-
onal) by different algorithms[34].

2.1 Simulation of polyhedral particles

The determination of the contact set for irregular polyhe-
dral particles proceeds in three steps. First, a “bounding
box” method is used to compute a list of neighboring par-
ticle pairs. Then, for each pair, the overlaps are calculated
through a 3D extension of the “shadow overlap method”
[24,34]. Several algorithms exist for overlap determination
between convex polyhedra [35,34,36]. Finally, in the case
of an overlap, the contact plane is determined by means of
the intersection between the two particles. This detection
procedure is fairly rapid and allows us to simulate large
samples composed of polyhedral particles.

The contacts between polyhedral particles belong to
different categories, namely face-face, edge-face, vertex-
face, edge-edge, vertex-vertex, vertex-edge; see Fig. 1. The
vertex-vertex and vertex-edge contacts are rare. Face-face
contacts are represented by three points and thus will be
referred to as “triple” contacts. The edge-face contacts
are represented by two points and will be called ”double”
contacts. All other contacts are “simple” contacts repre-
sented by a single point. In the iterative procedure of de-
termination of the contact forces and velocities, the points
representing the contact between two particles are treated
as independent points but the resultant of the calculated
forces are attributed to the contact with its application
point located on the contact plane.

2.2 Numerical samples

Our numerical samples are composed of rigid polyhedral
particles with shapes and sizes that represent those of bal-
last grains (Fig. 2). Each particle has at most 70 faces and
37 vertices and at least 12 faces and 8 vertices. A sample
contains nearly 1200 particles. The particle size is char-
acterized as the largest distance between the barycenter
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Fig. 1. Different types of contacts between two polyhedra.

and the vertices of the particle, to which we will refer as
“diameter” below. We used the following size distribution:
50% of diameter d,,;,, = 2.5 cm, 34% of diameter 3.75 cm,
16% of diameter d,,., = 5 cm. The particles are initially
placed in a rectangular box and compressed by downward
motion of the upper wall at zero gravity; see Fig. 3. Then,
the gravity is set to g and the upper wall is raised 1 cm
and fixed. The coefficient of friction between the particles
and with the horizontal walls was fixed to 0.4, but it was 0
at the vertical walls. The coeflicient of restitution between
particles was fixed to zero because of the high solid frac-
tion of the samples. One of the walls is allowed to move
horizontally (x direction in Fig. 3) and subjected to a har-
monic driving force. All other walls are immobile. For all
simulations the time step was 2.10™%s.

3 Vibrational dynamics

The free wall is subjected to a harmonic force as a function
of time,

(.fmaac + fmin) _ (fmaac - fmin)
2 2

f@) = sin wt, (1)
where fq: and fii, are the largest and lowest compres-
sive (positive) forces acting on the wall. The first term rep-
resents the mean confining force modulated by the second
term. At t = 0, the external force f = (fimaz + fmin)/2
causes the inward motion (contraction) of the free retain-
ing wall. Jamming occurs when the gap left between the

upper wall and the free surface of the packing is filled. If

Fig. 2. Examples of polyhedral shapes used in the simulations.

Fig. 3. A snapshot of the packing inside a box with a free
wall over which the driving force f(t) is applied along the z
direction.

fmin is above the (gravitational) force exerted by the par-
ticles on the free wall, f will be large enough to prevent the
wall from backward motion (extension) during the whole
cycle. Then, the granular material is in “passive state”
and the major principal stress direction is horizontal [37].
On the other hand, if f,,4, is below the force exerted by
the particles, f will never be large enough to prevent the
extension of the packing. This corresponds to the “active
state” where the major principal stress direction remains
vertical.

In all other cases, both contraction and extension occur
during each period, and the displacement Ax of the free
wall will be controlled by finin and finez. Without loss
of generality, we set fimin = 0. This ensures the largest
possible displacement of the wall in the active state. Four
different values of f,,. were tested, ranging from 2.10 N
to 10* N.

We first consider the trajectory x(t) of the free wall
which reflects the dynamics of the particles in the box
in response to harmonic forcing. Figure 4 shows z(t) for
frequency v = 5 Hz over a time interval At =1 s. We can
observe a fast initial contraction (¢ < 0.1 s) followed by
slow contraction over four periods. The initial contraction
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Fig. 5. A zoom on the displacement of the free wall as a func-
tion of time for a single period (up) in response to harmonic
force (down).
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is a consequence of the gap left between the free surface of
the packing and the upper wall. The subsequent periodic
motion of the wall takes place around this jammed state
and will be studied below.

A zoom on a single period is shown in Fig. 5. It begins
at the jamming position z = x; corresponding to the jam-
ming position reached at the end of the preceding period.
The motion of the wall begins (point a in Fig. 5) only
when the applied force f declines near to its minimum
fmin = 0. The maximum displacement Ax,,,; occurs at a
later time 6t (point b). From a to b, the force exerted by
the packing on the free wall is above the applied force, so
that the wall moves backward (extension). In this phase,
the packing is in an active state. The inverse situation pre-
vails from b to ¢ where the particles are pushed towards
the box (contraction). Then, the packing is in a passive
state. The new jamming position 2} is below the jamming
position x; reached at the end of the preceding period.

Fig. 6. Instantaneous particle velocity field in the passive
state, i.e. during inward motion of the free wall.
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Fig. 7. Force f, exerted by the particles on the free wall as a
function of displacement x.

The difference x; — mg represents the net compaction of
the packing over one period. The particle velocity field is
not a simple oscillation around an average position. The
particles undergo a clockwise convective motion in the cell

as shown in Fig. 6.

Figure 7 shows the horizontal force f, exerted by the
packing on the wall as a function of z over four periods. In
the active phase, f, grows slightly with . In the passive
phase, it grows faster and almost linearly as x decreases.
The vertical line corresponds to the jammed state where
fq decreases with f at x = x;. We also observe two tran-
sients : 1) unjamming and the onset of the active state, 2)
jamming from the passive state. Inside the packing, the
contact forces evolve between a fully jammed state, where
horizontal force chains dominate (Fig. 8(a)), and the ac-
tive state, where vertical gravity-induced force chains can
be observed (Fig. 8(b)).
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Fig. 8. Normal forces in the passive (a) and active (b) states in
a section of the packing parallel to the xz plane. The segments
connect particle centers with a thickness proportional to the
normal force.

4 Granular ratcheting

In our system, the solid fraction p of the packing increases
due to horizontal vibrations. This accumulation of plas-
tic strain under oscillatory loading is sometimes called
“granular ratcheting” [14,15]. To evaluate p, we consider
a control volume inside the box. The initial value of the
solid fraction is 0.50. Figure 9 shows the evolution of the
variation Ap of solid fraction for several periods. An ini-
tial compaction of 2% is followed by oscillations with a
small increase of Ap in each period. The initial compaction
should be attributed to the initial state where the packing
is not yet fully confined. We use pg = 0.51, reached after
a time lag of 0.2 s, as the reference value for the evolution
of solid fraction. The relative compaction of the packing
is given by Ap/po. The average compaction rate 7 over
several periods and for a total time interval At is

1 Ap

= A (2)
The compaction of the packing slows down logarithmically
at long times [18]. But, the short-time compaction can
well be approximated by a linear function with a constant
compaction per period Ap;, as seen in fig. 9. Then, we
have

. Apy
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Fig. 9. Evolution of the solid fraction Ap from the initial state
as a function of time over several periods.

For v =5 Hz and f4; = 6 102 N, we have 1) ~ 0.025 s~ 1.
This rate is faster in 3D compared to 2D simulations for
the same frequency [33].

It is important to note that compaction occurs in the
active state, i.e. during the extension of the packing. This
is shown in Fig. 10, where the variation Ap of the solid
fraction is plotted as a function of x. The solid fraction
increases during extension (increasing x) and decreases
during contraction (decreasing x).

Granular ratcheting has been investigated by numeri-
cal simulations showing that the anisotropy of sliding con-
tacts, where the friction force is fully mobilized, plays an
important role [14,15]. Quasi-static cyclic shearing also
leads to cumulative compaction of a granular material at
low strain amplitudes [39,38]. At large amplitudes, the
compaction is followed by decompaction (dilation) and no
net compaction can be observed over a full cycle. In our
system, compaction is a consequence of unjamming and
it is pursued during the whole active state. Decompaction
takes place in the passive state, but it is cut short by fast
jamming. The outcome of a full cycle is thus a net com-
paction of the packing.

5 Influence of loading parameters

We performed a series of simulations for frequencies v
ranging from 1 Hz to 60 Hz and for a total time of 1
s. All simulations yield similar results both for dynamics
and compaction. Moreover, a simple dimensional analysis
leads to the collapse of the data on a single plot. Indeed,
the frequency sets the time scale 7 = v 1. Force scales are
set by the largest driving force f,q, in the passive state
and the particle weights mg as well as the smallest driv-
ing force fin in the active state. Hence, dimensionally,
for fixed values of mg, fimin and fiae, all displacements
are expected to scale with =2 and all velocities with v 1.
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Fig. 10. Variation Ap of the solid fraction from the initial
state as a function of the displacement x of the free wall.

This scaling is shown in Fig. 11 where the phase space
trajectory is shown for v = 5 Hz and v = 10 Hz without
scaling and after scaling the displacements Az by v—2
and the velocities v by v~!. We see that the data from
both simulations collapse nicely on the same trajectory
after scaling. Figure 12 shows the maximum displacement
A, in the active state and the maximum velocity viqq
in the passive state as a function of v. The corresponding
fits by v=2 and v~! are excellent.

The role of force parameters mg, fmin and fiaee i less
evident. Since we have f,,;, = 0, we expect Ax,,q, to be
dependent on the ratio mg/ fiq. representing the relative
importance of the gravitational to driving forces. Indeed,
our data show that Az,,., varies as n_ulm; Fig. 13. On
the other hand, the mass ratio m,,/m, where m,, and m
are the mass of the free wall and the total mass of the
particles, must control the inertia and thus the maximum
displacement of the wall. Our simulations with different
values of m,, show that Axz,,,, varies as m/(m + my,).

Hence, we propose the following expression for the scal-
ing of displacements with loading parameters:

e () () @) 0

where C is a dimensionless prefactor. Fig. 15 shows Axpqs
as a function of (mg)?/[(m+muy)(fmazr?)] from different
simulations with different values of v, fiaz, g and my,.
We see that the data are in excellent agreement with Eq.
4. The prefactor is C' ~ 0.01. This scaling is the same
as in 2D simulations with a material constant C' ~ 0.05
for polygonal particles [33]. Let us also remark that Eq. 4
predicts that Ax,,q. varies as ¢2. This prediction agrees
well with our simulation data shown in Fig. 14 for four
different values of g.
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Fig. 11. Phase space trajectories for two frequencies without
scaling (a) and with scaling (b) of the displacements and ve-
locities with respect to the frequency.
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6 Compaction rates

We now come back to granular ratcheting and we would
like to evaluate short-time compaction rates as a function
of frequency. According to Eq. 3, the compaction rate 7
varies linearly with the frequency v if the total compaction
per period Ap; is independent of v. Fig. 16 shows 1 as a
function of v. We see that only at low frequencies, 7 in-
creases linearly with v. Beyond a characteristic frequency
Ve, 1 declines with v. The largest compaction rate 7,4, 0c-
curs for v = v, ~ 10 Hz. The corresponding time 7, = v !
represents the characteristic time for the relaxation of the
packing. In the active state, the packing needs a finite rear-
rangement time to achieve a higher level of solid fraction.
As long as the vibration period 7 = ! is longer than 7.,
the packing has enough time to relax fully to a more com-
pact equilibrium state. But, when the period 7 is below 7,
the relaxation is incomplete so that Ap; < Apaz, Wwhere
Apmaz is the largest compaction between two periods.
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Fig. 12. Maximum displacement As,qz (2) and the maximum
velocity Umaz (b) as a function of frequency v.
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It is expected that Ap; should follow the same scaling
with the frequency as the displacement of the retaining
wall, i.e. Apy o¢ Appmar v~ 2. This is because the volume
change AV is proportional to Az. Hence, from Eq. 3 and
imposing the continuity at v = v., we get

] —A’;’g‘” v v < Vg,
M= Apmaz,2

()

-1
SatLVE VT V> Ve

Fig. 16 shows this prediction together with the data points
(fitting form 1). We see that, although v, is the only fit-
ting parameter, the compaction rate 7 is well adjusted by
Eq. 5. The prefactor Appaz/po is ~ 0.005, correspond-
ing to Apmaz = 0.0025. Remark that the existence of the
peak in compaction rate is a consequence of the fact that
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Fig. 16. The compaction rate 1 as a function of the frequency
(circles) fitted by two different functions; see text.

in the simulations the total duration of vibrations is con-
stant (= 1 s). According to equation 3, the cumulative
compaction Ap increases with the number of cycles for all
frequencies and it is assumed to be linear for short times.
Hence, if a characteristic time did not exist, the cumu-
latve compaction over the total duration would increase
linearly with the number of cycles. This is the case for
v < V., but beyond this value it declines as a result of
incomplet relaxation. Let us also remark that the charac-
teristic time 7. governs only the particle rearrangements
and compaction whereas the dynamics is globally scaled
with driving parameters according to equation 4.

In spite of the sharp transition at v = v, it is con-
venient to construct a single expression containing the
correct behavior both at low and high frequencies. As in
2D for polygon packings [33], the following fitting form
provides a good approximation as shown also in Fig. 16
(fitting form 2):

| 4 =072

. Apmam
- 14+ *2

n Ve
Po
where v* = v/v.. An alternative form which fits better
the slop in the range v < v, is the following (fitting form
3):

v, (6)

ApmaT 1+v*
s %y *’ 7
U o 1o (7)

Within the available precision on the data points, the
above fitting forms are equivalent. The precision can be
improved by ensemble average over many different realiza-
tions, but would require considerably more computation
effort.

The characteristic time 7. = 0.1 s is of the same or-
der of magnitude as the time required for one particle
to fall down a distance equal to its diameter. Obviously,
the above findings concern only short-time compaction
(At < 1 s). At longer times, 7 declines with time, but
the scaling with frequency according to Eq. 5 is expected
to hold at each instant of evolution of the packing.

Emilien Azéma et al.: Short-time dynamics of a packing of polyhedral grains under horizontal vibrations

7 Conclusion

In this paper, the contact dynamics method was employed
to simulate and analyze the dynamics of a system of poly-
hedral particles subjected to horizontal harmonic forcing
of a retaining wall. Our system is devoid of elastic ele-
ments and, hence, the behavior is fully governed by parti-
cle rearrangements. Moreover, it involves a jammed state
separating passive (loading) and active (unloading) states.
Dimensional analysis was used to scale the displacements
with the frequency of oscillations. It was shown that the
data collapse by scaling the displacements by the inverse
square of frequency. We also studied the scaling with con-
fining force and particle weights.

Granular ratcheting under horizontal vibrations was
investigated. During each vibration period a small com-
paction of the system occurs during unloading, i.e. upon
sample extension, followed by decompaction upon con-
traction. The compaction rate increases linearly with fre-
quency up to a characteristic frequency and then it de-
clines in inverse proportion to frequency. The characteris-
tic frequency was interpreted in terms of relaxation time
of the packing under its own weight during the unloading
phase.

The similarity of the phenomenology of vibrational dy-
namics and compaction at short times in the 3D system
of polyhedral particles with that of a 2D system of polyg-
onal particles suggests that space dimensionality plays a
minor role in granular dynamics. The characteristic times
and compaction rates are slightly different but the scal-
ing behavior and the functional dependence of the com-
paction rate with frequency are the same. A comparison
with spherical particles would be interesting in order to
highlight the effect of particle shapes on these parameters.
On the other hand, the characteristic time appears as a
crucial parameter for the compaction rate and it merits
further investigation as a function of various control pa-
rameters of the system.

The authors would like to thank specially F. Dubois for
interesting discussions and help with the software LMGC90.
This work was supported by a grant from the Région
Languedoc-Roussillon and the french railway company SNCF.
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