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a b s t r a c t

The contact dynamics (CD) method is presented as a discrete element method for the sim-
ulation of nonsmooth granular dynamics at the scale of particle rearrangements where
small elastic response times and displacements are neglected. Two central ingredients of
the method are detailed: (1) The contact laws expressed as complementarity relations
between the contact forces and velocities and (2) The nonsmooth motion involving velocity
jumps with impulsive unresolved forces as well as smooth motion with resolved static
forces. We show that a consistent description of the dynamics at the velocity level leads
to an implicit time-stepping scheme together with an explicit treatment of the evolution
of the particle configuration. We also discuss the intuitive features of the CD method with
regard to collective phenomena involved in the multicontact dynamics of granular media:
the role of the coarse-graining time dt, the precision issues and the interpretation of the
restitution coefficients.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The contact dynamics (CD) method, also called non-
smooth contact dynamics (NSCD), is a discrete element
method (DEM) for the simulation of granular materials. It
emerged from a mathematical formulation of nonsmooth
dynamics and the subsequent algorithmic developments
by J.J. Moreau and M. Jean (Moreau, 1977, 1983, 1988a,b,
1993, 1994; Jean and Pratt, 1985; Jean, 1988, 1995, 1999;
Jean and Moreau, 1992; Jean et al., 1994). The fundamental
difference between this method and the common DEM or
molecular dynamics (MD) approach lies in the treatment
of small length and time scales involved in the dynamics
of granular media. In MD-type DEM, pioneered by P. Cun-
dall, the particles are treated as rigid bodies but the con-
tacts between particles are assumed to be compliant and
obeying a viscoelastic behavior in which the local strain
variables are the relative particle positions and displace-
ments (Cundall, 1971; Cundall and Strack, 1979; Thornton
and Yin, 1991; Herrmann, 1993; Thornton, 1993; Pöschel
and Buchholtz, 1995; Thornton, 1997; Luding, 1998;

Matuttis et al., 2000; McNamara and Herrmann, 2004;
Garca and Medina, 2007; Gilabert et al., 2007; Richefeu
et al., 2007). The time-stepping schemes used for the
numerical integration of the equations of motion imply
thus a fine resolution of the small time and length scales
involved in contact interactions. In the CD method, these
small scales are neglected and their effects absorbed into
contact laws together with a nonsmooth formulation of
particle dynamics described at a larger scale than small
elastic response times and displacements.

The CD method has been applied to investigate granular
materials (Moreau, 1997; Radjai et al., 1996b; Radjai et al.,
1998; Bratberg et al., 2002; Radjai and Roux, 2002; Staron
et al., 2002; Nouguier-Lehon et al., 2003; Renouf et al.,
2004; McNamara and Herrmann, 2004; Taboada et al.,
2005; Saussine et al., 2006; Azéma et al., 2007; Ries
et al., 2007), as well as other mechanical systems com-
posed of rigid bodies with frictional contact interactions
such as masonry and tensegrity structures (Acary and Jean,
1998; Nineb et al., 2006). The results prove often to be in
good agreement with experimental observation, and for
static and plastic shear properties with MD simulations
(Radjai et al., 1995, 1997a, 1999; Moreau, 1997; Lanier
and Jean, 2000; Radjai and Roux, 2004). The differences be-
tween the two methods arise mainly from the scales of
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description and the presence of elastic parameters in the
MD method (Radjai et al., 1997a; McNamara and
Herrmann, 2004, 2006).

In this paper, we present the CD method as a consistent
model of nonsmooth and multicontact granular dynamics
expressed in contact coordinates. Nonsmoothness refers
to various degrees of discontinuity in local or global char-
acteristics of a dynamical system. The mathematical con-
cepts and tools for the treatment of nonsmooth dynamics
were developed in relation with mechanical problems
involving unilateral constraints and in the context of con-
vex analysis; see Brogliato (1999) for a detailed history.
The multicontact feature is present in static states and in
dense flows of granular materials where spatial correla-
tions occur at large length scales and impulse dynamics
is mixed with smooth particle motions at different time
scales (Bershadskii, 1994; Lvoll et al., 1999; Puglisi et al.,
2002; Radjai and Roux, 2002; Silbert et al., 2002; Staron
et al., 2002; Pouliquen, 2004; Majmudar and Behringer,
2005; Agnolin and Roux, 2007; Behringer et al., 2007;
Olsson and Teitel, 2007).

While explicit integration schemes used in the MD ap-
proach are rather straightforward to implement in a
numerical code, the underlying model of the CD method
seems to be more complex and thus less accessible to com-
puter implementation. This paper is meant to highlight the
intuitive aspects of the CD method and to illustrate its sim-
ple but powerful logics in treating multiple contacts.

2. Particle-scale model of granular dynamics

The dynamics of a homogeneous granular flow involves
at least three different scales: (1) small time and length
scales characterizing contact interactions, (2) intermediate
scales associated with particle rearrangements and shear
rate, and (3) large length scales related to geometrical cor-
relations at even larger scales. The elastic response time se

of the particles and their contacts is far below the rear-
rangement time characterized by the mean time interval
sc between successive events (collisions, etc.). In the same
way, the relative stiffness E=p, where E is the Young mod-
ulus of the particles and p the mean confining stress, is nor-
mally high, and hence the elastic displacements ke are tiny
compared to the mean particle size d.

Various DEM algorithms differ in the treatment of small
scales. The common denominator is that the particles are
considered as rigid bodies and thus the material behavior
is attributed to the contact zones, with local strain vari-
ables derived from rigid-body degrees of freedom (transla-
tions and rotations) of the particles. When the small scales
are numerically resolved, as in MD-like or smooth DEM,
the particle motions are smooth (twice differentiable)
and the equations of dynamics are integrated with the help
of force laws governing particle interactions. The latter ex-
presses the contact force~f ð~d; _~dÞ between a pair of touching
particles as a (mono-valued) function of their contact dis-
placement~d (a displacement vector with respect to a refer-
ence state or defined geometrically) and its time derivative
_~d. With an explicit integration scheme, the time step dt

must be small compared to se for the sake of numerical sta-

bility. Numerical efficiency often imposes the use of simple
force laws (linear elastic with viscous damping and a Cou-
lomb friction law).

An interesting issue is whether one can or should ne-
glect the small sub-particle scales and turn to a model of
granular dynamics at the scale of particle rearrangements.
In other words, when only plastic granular flow is of inter-
est, the contact elastic strains may become irrelevant.
Numerically, this also means that large time steps can then
be used and materials with very stiff particles simulated.
Another motivation is that, when deformable particles
are considered and modeled, e.g. within a finite-element
approach, it is more plausible to consider their mutual con-
tacts as rigid, i.e. as purely unilateral constraints. This is
conform to the requirement of non-interpenetration be-
tween solid bodies.

Such a particle-scale model of granular dynamics im-
plies, however, velocity jumps. Let dt be the time resolu-
tion (a time step in numerical simulations). Since dt � se,
the net effect of fast collisional dynamics in a multicontact
system over the time interval dt is a finite change of parti-
cle velocities and impulsive forces through the contact net-
work as well as a net dissipation due to contact plasticity
or viscosity. This is similar to shock dynamics in a dilute
gas governed by binary collisions except that in the latter
the impulse is confined to a single contact at a time
whereas in a multicontact system the whole system is af-
fected. This nonsmooth dynamics can not be described
by second order equations of motion since the accelera-
tions are no more defined. The model should thus neces-
sarily be formulated at the velocity level with built-in
discontinuities.

The CD method is based on a particle-scale model of
granular dynamics with two major ingredients. First, the
interactions between particles are described by contact
laws instead of force laws. In this framework, a contact is
a dynamic and unilateral element with a coarse-grained
behavior over the considered time interval dt. Second, the
equations of dynamics are adapted to account consistently
for both smooth and nonsmooth motion in a time-stepping
scheme. Below, we discuss in detail these features of the
CD method.

3. Nonsmooth contact laws

3.1. A dynamic contact condition

Let us consider two particles i and j and a potential con-
tact point a between them. We assume that a unique con-
tact plane (line in 2D) tangent to the two particles at a can
be geometrically defined so that the contact can be en-
dowed with a local reference frame defined by a normal
unit vector~n and a tangential unit vector~t lying on the tan-
gent plane. The orientation of the axes is a matter of con-
venience. In the following, the subscripts n and t refer to
normal and tangential components, respectively, with re-
gard to the contact frame.

A potential contact point between two particles has the
following dynamic content. As long as the distance dn be-
tween the two particles remains positive (corresponding
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to a gap), no force is activated and the normal force fn is
identically zero. But when dn ¼ 0, a nonnegative (repul-
sive) normal force fn is mobilized at the contact point
and it can take indefinitely large values depending on the
forces acting on the two particles; see Fig. 1. These condi-
tions define a complementary relation, called Signorini’s con-
ditions, between dn and fn:

dn > 0) fn ¼ 0
dn ¼ 0) fn P 0:

�
ð1Þ

Only one of the two alternatives is true. This mutual dis-
junction between the two statements is fundamental as
it implies that none of the two variables can be reduced
to a mono-valued function of the other. In other words,
Signorini’s conditions define a degenerate, i.e. multi-valued,
interaction law. It can be represented as a graph displayed
in Fig. 2. Symbolically, we represent this complementarity
relation as follows:

dn$
S

fn: ð2Þ

A contact is persistent if both dn ¼ 0 and un ¼ _dn ¼ 0. The
normal force vanishes at a breaking contact, i.e. when
dn ¼ 0 and un > 0. Hence, Signorini’s complementarity
relation can be developed as follows:

dn > 0) fn ¼ 0

dn ¼ 0 ^
un > 0) fn ¼ 0
un ¼ 0) fn P 0

�8<
: ð3Þ

In this form, Signorini’s conditions contain a kinematic
constraint: For a contact, i.e. for dn ¼ 0, we have

un$
S

fn: ð4Þ

The full dynamic content of Signorini’s conditions appears
for the second derivative €dn ¼ _un with respect to time
where the relative acceleration €dn and fn will obey Signo-
rini’s complementarity relation. However, in a nonsmooth
formulation where velocity jumps are expected, we have to
stay at the velocity level and the relation (3) should further
be reinterpreted according to the coarse-graining time, as
we shall see below.

The three alternatives in (3) lead to the condition of a
complete contact law formulated by Moreau as follows
(Moreau, 1994):

dn > 0) fn ¼ 0
dn 6 0) un P 0
un > 0) fn ¼ 0

8><
>: ð5Þ

In this writing, dn 6 0 corresponds to the condition of a
geometrical contact which was expressed in (3) and (1)
by an equality. The first and third conditions are the same
as in (3). The second condition is necessary to ensure that
the particle motions will respect the unilateral nature of a
contact. Up to numerical precision, this condition in CD
simulations prevents the violation of unilateral constraints
in the absence of a repulsive force law.

In the context of nonsmooth motion, the time deriva-
tive _dnðtÞ is not unique. Assuming bounded variation, we
thus distinguish between the left-limit velocity u�n and
the right-limit velocity uþn which in a time-stepping formu-
lation should be considered as the contact velocities at
times t and t þ dt, respectively. With a finite time resolu-
tion dt, the actual velocity is immaterial since only left
and right velocities (and the velocity jumps) enter the
dynamics; see Section 4. In analogy with a binary collision,
the main unknown of the problem is uþn that we would like
to calculate given the approach velocity u�n attributed to
the beginning of the time step in a time-stepping scheme.
The contact model depends on the choice of the velocity un

and the nature of the force fn involved in the complemen-
tarity relation (3) or the relations (5) of a complete contact
law in the context of nonsmooth evolution.

In a granular flow, the normal velocity un at a contact
evolves during a time interval dt either as a result of
smooth motion or due to impulses generated by collisions.
These impulses propagate through the contact network so
that a contact may experience several successive impulses
during dt. Such events can be resolved for a sufficiently
small time increment dt or they may be tracked according
to an event-driven scheme. The event-tracking strategy is,
however, numerically inefficient, of limited applicability
and in contradiction with the scope of the CD method
based on coarse-grained dynamics.

Moreau recognized that the approximation of the con-
tact force fn during dt is a measure problem in the mathe-
matical sense (Moreau and materials, 1994; Moreau,Fig. 1. A potential contact between two particles.

Fig. 2. Characteristics of Signorini’s complementarity relation.

F. Radjai, V. Richefeu / Mechanics of Materials 41 (2009) 715–728 717



Author's personal copy

2004). A static or regular force f s is the density of the mea-
sure f s dt with respect to dt. In contrast, an impulse p gen-
erated by a collision has no density with respect to dt. In
other words, the forces at the origin of the impulse are
not resolved at the scale dt. In practice, however, we can
not differentiate these contributions in a coarse-grained
dynamics, and the two contributions should be summed
up to a single measure df 0n. Then, the contact force is de-
fined as an average of this measure over dt:

fn ¼
1
dt

Z tþdt

t
df 0n: ð6Þ

With this definition, the equations of dynamics can be for-
mulated as measure differential equations, as we shall see in
Section 4. Except in static equilibrium where the forces are
of static origin, fn generally depends on time resolution. For
large time steps, the fast dynamics, e.g. successive colli-
sions or rearrangement events, is partially filtered out
and the remaining effect appears as an average force
p=dt, in addition to the static part f s

n . For small enough time
steps, the fast dynamics prevails and the corresponding
contribution p=dt increases.

As to the velocity un involved in Signorini’s condition (3),
a simple and physically motivated choice is to assume that
un is a weighted mean between u�n and uþn : un ¼
g u�n þ ð1� gÞuþn , where g is a material parameter charac-
terizing the contact. The value g ¼ 0 seems plausible as it
corresponds to a complementarity Signorini relation be-
tween the mean force fn and the right-limit velocity uþn
which is the main unknown of the problem. However, for
un ¼ 0 this choice leads to uþn ¼ 0. But, according to (3) non-
zero forces occur only for un ¼ 0. Hence, this choice implies
that, independently of the dynamics of the system, nonzero
forces will occur only at persistent (uþn ¼ 0) contacts. This
choice eludes thus the treatment of collisions with nonzero
normal restitution coefficient en for which the contact is not
persistent (uþn > 0) although the corresponding force or
impulsion is nonzero. For g–0, a binary shock implies
�uþn =u�n ¼ g=ð1� gÞ. Identifying this ratio with en, one gets
g ¼ en=ð1þ enÞ. Hence, we set

un ¼
uþn þ en u�n

1þ en
: ð7Þ

Notice that, in contrast to the common definition of resti-
tution coefficient for binary collisions, Eq. (7) is not a kine-
matic relation between u�n and uþn . It is simply the
expression of a weighted mean velocity that is assumed
to obey Signorini’s conditions un$

S
fn. Its exact role in the

CD model will become clear in combination with the equa-
tions of dynamics.

3.2. Coulomb’s friction law

The Coulomb law of dry friction is, by definition, a com-
plementarity relation between the friction force ft and the
sliding velocity ut at a contact point between two particles:

ut > 0) ft ¼ �lfn

ut ¼ 0) �lfn 6 ft 6 lfn

ut < 0) ft ¼ lfn

8><
>: ð8Þ

where l is the coefficient of friction and it is assumed that
the unit tangential vector t points in the direction of the
sliding velocity so that~ut �~t ¼ ut . The graph of this comple-
mentarity relation is displayed in Fig. 3. Like Signorini’s
conditions, this is a degenerate law that can not be reduced
to a mono-valued function between ut and ft . For a concise
expression of Coulomb’s law, we will use the following
notation:

ut$
C

ft : ð9Þ

As in the case of Signorini’s conditions, it is useless to con-
sider higher order developments (for ut ¼ 0 and _ut ¼ 0) in
the context of nonsmooth motion. This can be useful only
in a system or for system parameters for which the contact
network does not evolve and the contact status (sliding/
nonsliding, force-transmitting/nontransmitting) fully char-
acterizes the mechanical state. In the MD method, the sec-
ond condition (the vertical branch) of Coulomb’s friction
law (8) is replaced either by a tangential elastic relation
or by a viscous law. This regularization transforms the com-
plementarity relation into a mono-valued function at the
price of introducing small local strain or strain-rate param-
eters into the problem.

In the framework of the CD model, Coulomb’s law needs
to be reformulated to incorporate velocity discontinuities
and impulsions for a large integration time dt. The points
discussed with regard to Signorini’s conditions in Section
3.1 apply also to Coulomb’s conditions. The force ft at a
contact represents the average effect of static and impul-
sive forces experienced by the contact during the time
lag dt. The sliding velocity ut entering Coulomb’s law (8)
is thus a mean velocity. Along the same lines as for normal
contact reactions, a simple model consistent with tangen-
tial restitution is to set

ut ¼
uþt þ et u�t

1þ j et j
; ð10Þ

where et 2 ½�1;1� is the tangential restitution coefficient.
This expression of ut is assumed to obey Coulomb’s law
ut$

C
ft .

The complementarity relations (3) and (8) together
with the expressions (7) and (10) of the mean velocity de-
fine a coarse-grained model of frictional contact with three
material parameters l; en and et . This model can be used to

Fig. 3. Coulomb’s friction law.
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treat frictional contact problems for deformable or unde-
formable bodies. It has the unique feature of combining
static and impulsive forces in the same framework. The
rich content of this model can be appreciated only in inter-
play with the equations of dynamics, as we shall see below
for granular media composed of rigid particles.

4. Nonsmooth dynamics in contact frame

4.1. Equations of dynamics

The rigid-body motion of the particles in a granular
assembly is governed by Newton’s equations under the ac-
tion of imposed external bulk or boundary forces ~Fext , and
the contact reaction forces~f a exerted by neighboring par-
ticles at the contact points a. The contact reactions may in-
volve contact torques but torque transmission will not be
considered here. We also consider mainly a 2D system
since our focus here is on the method rather than its appli-
cations to various geometries. An absolute reference frame
with unit vectors (x̂; ŷ) is assumed, and we set ẑ ¼ x̂� ŷ.
Each particle is characterized by its mass m, moment of
inertia I, mass center coordinates ~r, mass center velocity
~U, angular coordinates h, and angular velocity xẑ. For a
smooth motion (twice differentiable), the equations of mo-
tion of a particle are

m _~U ¼~F þ~Fext

I _x ¼MþMext

ð11Þ

where~F ¼
P

a
~f a and M ¼ ẑ �

P
a~c

a �~f a where~ca is the con-
tact vector joining the center of mass to the contact a and
Mext represents the moment of external forces.

For a nonsmooth motion with time resolution dt involv-
ing impulses and velocity discontinuities, an integrated
form of the equations of dynamics should be used. As dis-
cussed in Section 3, every force sums up static and impul-
sive actions so that it should naturally be represented as a
measure d~F 0 rather than a density with respect to time. It
has a density~F with respect to dt only for a smooth motion.
Hence, the equations of dynamics should be written as an
equality of measures:

md~U ¼ d~F 0 þ~Fext dt

I dx ¼ dM0 þMext dt
ð12Þ

where d~F 0 ¼
P

ad~f 0a and dM0 ¼ ẑ �
P

a~c
a � d~f 0a. These mea-

sure differential equations can be integrated over dt with
the definition of~F as an approximation of the integral over
d~F 0:Z tþdt

t
d~F 0 ¼~F dt ð13Þ

In the same way, we set
R tþdt

t dM0 ¼M dt. With these def-
initions, the integration of Eq. (12) over dt yields

m ð~Uþ � ~U�Þ ¼ dt ~F þ dt ~Fext

I ðxþ �x�Þ ¼ dt Mþ dt Mext

ð14Þ

where ð~U�;x�Þ and ð~Uþ;xþÞ are the left-limit and right-
limit velocities of the particle, respectively. In this form,
the accelerations are replaced by velocity jumps ~Uþ � ~U�

and xþ �x�, and Newton’s equations take the form of
an equality between the change of momenta and the aver-
age impulse during dt.

Although Eq. (14) may be considered as resulting from a
direct integration of smooth Eq. (11) over a short time lag,
the formulation of dynamics in terms of measures is a nec-
essary step in a rigorous mathematical formulation under-
taken by Moreau and other precursors of nonsmooth
mechanics. For example, from this formulation, it becomes
clear that, according to (13),~F is a coarse-grained force. This
means that, its dynamic content depends on the time reso-
lution dt. Clearly, in a quasi-static granular flow, the contact
forces ~F reflect basically the confining stresses which are
regular static forces applied on the system, so that the value
of the time step in CD simulations will have negligibly small
effect on the calculated forces. In contrast, for a faster flow
and in dynamic transients during quasi-static flow, the va-
lue of time step matters. This should not, however, be con-
sidered as a numerical artifact but rather as a physical effect
reflecting the nonsmooth character of granular flow. Such
effects of the integration time are also observed in MD sim-
ulations. For example, it was shown that the velocity distri-
butions and their spatial correlations obtained from the
integration of particle displacements crucially depend on
the integration time (Radjai and Roux, 2002).

The equations of dynamics can be written in a compact
form for a set of Np particles by using matrix representa-
tion. The particles are labelled with integers i 2 ½1;Np�.
The forces and force moments Fi

x; F
i
y;M

i acting on the par-
ticles i are arranged in a single high-dimensional column
vector represented by a boldface letter F belonging to
R3Np . In the same way, the external bulk forces Fext;x; Fext;y;

Mext applied on the particles and the particle velocity com-
ponents Ui

x;U
i
y;xi are represented by column vectors Fext

and U, respectively. The particle masses and moments of
inertia define a diagonal 3Np � 3Np matrix denoted by M.
With these notations, the equations of dynamics (14) are
cast into a single matrix equation:

MðUþ � U�Þ ¼ dtðF þ FextÞ ð15Þ

4.2. Transfer equations

In the MD method, the equations of motion of the par-
ticles are integrated with the help of force laws which ex-
press the contact forces as a function of the actual
mechanical state (particle positions and velocities) of the
system. In the CD method, the contact forces are not expli-
cit functions of the state. Hence, the forces and velocities
should be determined at the same time. To this end, as
the contact laws are expressed in contact variables, we
need to express the equations of dynamics in the same
variables.

The contacts are labelled with integers a 2 ½1;Nc�,
where Nc is the total number of contacts. Like particle
velocities, the contact velocities ua

n and ua
t can be collected

in a column vector u 2 R2Nc . In the same way, the contact
forces f a

n and f a
t are represented by a vector f 2 R2Nc . We

would like to transform the equations of dynamics from
F and U to f and u.

F. Radjai, V. Richefeu / Mechanics of Materials 41 (2009) 715–728 719
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The formal transformation of matrix Eq. (15) is straight-
forward. Since the contact velocities u are linear in particle
velocities U, the transformation of the velocities is an af-
fine application:

u ¼ G U ð16Þ

where G is a 2Nc � 3Np matrix containing basically infor-
mation about the geometry of the contact network. A sim-
ilar linear application relates f to F:

F ¼ H f ð17Þ

where H is a 3Np � 2Nc matrix. We will refer to H as contact
matrix. It contains the same information as G in a dual or
symmetric manner. It can easily be shown that

H ¼ GT ð18Þ

where GT is the transpose of G. This property can be in-
ferred from the equivalence between the power F � U
developed by ‘‘generalized” forces F and the power f � u
developed by the bond forces f . In general, the matrix H
is singular and, by definition, its null space has a dimension
at least equal to 2Nc � 3Np. A schema of this transforma-
tion from particle dynamics to transfer equations is dis-
played in Fig. 4.

The matrix Hia can be decomposed into two matrices
Hia

n and Hia
t such that

ua
n ¼

X
i

HT;ai
n Ui

ua
t ¼

X
i

HT;ai
t Ui

ð19Þ

and

Fi ¼
X

a
ðHia

n f a
n þ Hia

t f a
t Þ ð20Þ

Using these relations, Eq. (15) can be transformed into two
equations for each contact a:

uaþ
n � ua�

n ¼ dt
X

i;j

HT;ai
n M�1;ij

X
b

ðHjb
n f b

n þ Hjb
t f b

t Þ þ Fj
ext

( )

uaþ
t � ua�

t ¼ dt
X

i;j

HT;ai
t M�1;ij

X
b

ðHjb
n f b

n þ Hjb
t f b

t Þ þ Fj
ext

( )

ð21Þ

We now can make appear explicitly linear relations be-
tween the contact variables from Eq. (21) and definitions
(7) and (10). We set

Wab
k1k2
¼
X

i;j

HT;ai
k1

M�1;ij Hjb
k2
; ð22Þ

where k1 and k2 stand for n or t. With this notation, Eq. (21)
can be rewritten as

1þ en

dt
ðua

n � ua�
n Þ ¼Waa

nnf a
n þWaa

nt f a
t

þ
X
bð–aÞ

n
Wab

nnf b
n þWab

nt f b
t

o

þ
X

i;j

HT;ai
n M�1;ijFj

ext ð23Þ

1þ et

dt
ðua

t � ua�
t Þ ¼Waa

tn f a
n þWaa

tt f a
t

þ
X
bð–aÞ

n
Wab

tn f b
n þWab

nt f b
t

o

þ
X

i;j

HT;ai
t M�1;ijFj

ext ð24Þ

The coefficients Waa
k1k2

for each contact a can be calculated
as a function of the contact geometry and inertia parame-
ters of the two partners 1a and 2a of the contact a. Let~ca

i be
the contact vector joining the center of mass of particle i to
the contact a. The following expressions are easily
established:

Waa
nn ¼

1
m1a

þ 1
m2a

þ ðc
a
1tÞ

2

I1a

þ ðc
a
2tÞ

2

I2a

;

Waa
tt ¼

1
m1a

þ 1
m2a

þ ðc
a
1nÞ

2

I1a

þ ðc
a
2nÞ

2

I2a

;

Waa
nt ¼Waa

tn ¼
ca

1nca
1t

I1a

þ ca
2nca

2t

I2a

;

ð25Þ

where ca
in ¼~ca

i �~na and ca
it ¼~ca

i �~ta are the components of
the contact vectors in the contact frame; see Fig. 5. Note
that the coefficients Waa

k1k2
are inverse reduced inertia.

contact laws

tramsfer equations

dynamics

,

Fig. 4. Matrix transformation between particle and contact coordinates.
Fig. 5. The geometry of a contact a between two particles 1a and 2a with
contact vectors~ca and contact frame ð~na;~taÞ.
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An alternative representation of Eqs. (23) and (24) is

Waa
nnf a

n þWaa
nt f a

t ¼ ð1þ enÞ
1
dt

ua
n þ aa

n; ð26Þ

Waa
tt f a

t þWaa
tn f a

n ¼ ð1þ etÞ
1
dt

ua
t þ aa

t : ð27Þ

The two offsets aa
n and aa

t can easily be expressed from the
Eqs. (23) and (24). We refer to Eqs. (26) and (27) or Eqs.
(23) and (24) as transfer equations since the contact a
between the two particles 1a and 2a appears here as a uni-
lateral element (with regard to Signorini’s conditions and
Coulomb’s friction law) allowing for force transfer accord-
ing to the values of aa

n and aa
t which depend on the left-limit

velocity and the other forces acting on the particles 1a and
2a. To see this point, starting with the equations of dynam-
ics for each of the two particles, it is easy to show that

aa
n ¼ ba

n � ð1þ enÞ
1
dt

ua�
n þ

~F2a
ext

m2a

�
~F1a

ext

m1a

 !
�~na; ð28Þ

aa
t ¼ ba

t � ð1þ etÞ
1
dt

ua�
t þ

~F2a
ext

m2a

�
~F1a

ext

m1a

 !
�~ta: ð29Þ

The effect of the approach velocity (left-limit velocity)
ðua�

n ;ua�
t Þ appears as an impulse depending on the reduced

mass and the restitution coefficient. The effect of contact
forces ~f b

i acting on the two touching particles i are repre-
sented by ba

n and ba
t given by

ba
n ¼

1
m2a

X
bð–aÞ

~f b
2a
�~na � 1

m1a

X
bð–aÞ

~f b
1a
�~na; ð30Þ

ba
t ¼

1
m2a

X
bð–aÞ

~f b
2a
�~ta � 1

m1a

X
bð–aÞ

~f b
1a
�~ta: ð31Þ

The transfer Eqs. (26) and (27) define a system of two lin-
ear equations between the contact variables at each con-
tact point. The solution, when the values of an and at at a
contact are assumed, should also verify the contact com-
plementarity relations (3) and (8). Graphically, this means
that the solution is at the intersection between the straight
line (26) and Signorini’s graph on one hand, and between
(27) and Coulomb’s graph, on the other hand. This is a
highly nonlinear procedure for a multicontact system as
discussed below.

5. Iterative determination of contact forces and
velocities

5.1. Single contact problem

In order to solve the system of 2Nc transfer equations
(in 2D) with the corresponding complementarity relations,
we proceed by an iterative method which converges to the
solution simultaneously for all contact forces and veloci-
ties. We first consider a single-contact situation to which
we will refer as the local SC problem (SC standing for Signo-
rini-Coulomb). It consists of the determination of contact
variables f a

n ; f
a
t ;u

a
n and ua

t at a single contact given the val-
ues of the offsets aa

n and aa
t at the same contact. Formally,

by combining the transfer Eqs. (26) and (27) with the com-
plementarity relations (4) and (9), it is easily shown that
the local SC problem is equivalent to the following
relations:

Waa
nnf a

n � aa
n �Waa

nt f a
t

� �
$S f a

n ; ð32Þ

Waa
tt f a

t � aa
t �Waa

nt f a
n

� �
$C f a

t : ð33Þ

The solution of this problem is given by intersecting the
lines representing transfer equations with Signorini’s and
Coulomb’s graphs; see Fig. 6. The intersection occurs at a
unique point due to the positivity of the coefficients
Waa

k1k2
(positive slope). In other words, the dynamics re-

moves the degeneracy of the contact laws. Notice, how-
ever, that the two intersections can not be established
separately when Waa

nt –0. To find the local solution, one
may consider the intersection of transfer equations with
the force axis, i.e. by setting un ¼ ut ¼ 0. This yields two
values ga

n and ga
t of f a

n and f a
t , respectively:

ga
n ¼

Waa
tt aa

n �Waa
nt aa

t

Waa
nnW

aa
tt � ðWaa

nt Þ
2 ; ð34Þ

ga
t ¼

Waa
nnaa

n �Waa
tn aa

t

Waa
tt W

aa
nn � ðWaa

tn Þ
2 : ð35Þ

It can be shown that the denominator is positive. If ga
n < 0,

then the solution is f a
n ¼ f a

t ¼ 0. This corresponds to a
breaking contact. Otherwise, i.e. if ga

n P 0, we have
f a
n ¼ ga

n . With this value of f a
n , we can determine the solu-

tion of the Coulomb problem. If ga
t > lf a

n , the solution
is f a

t ¼ lf a
n and in the opposite case, i.e. if ga

t < �lf a
n , the

Fig. 6. Solution of the local Signorini-Coulomb problem at the intersection points between transfer equations and complementarity relations.
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solution is f a
t ¼ �lf a

n (sliding contact). Otherwise, i.e. when
�lf a

n < ga
t < lf a

n , the solution is f a
t ¼ ga

t (rolling contact).
In order to illustrate how this works, let us consider a

simple contact problem between two disks of masses m1

and m2 and radii R1 and R2 lying on the x-axis and sub-
jected to constant external forces F1hatx and �F2hatx,
respectively, where F1 P F2 P 0; see Fig. 7. We also as-
sume that the two particles come in touch with a relative
velocity u�n ¼ U2

x � U1
x 6 0. The normal coefficient of resti-

tution is en and the inverse reduced mass is Wnn ¼
ðm1 þm2Þ=ðm1m2Þ since for a disk ct ¼~c �~t ¼ 0; see Eq.
(25). From Eqs. (28) and (29), we have

an ¼ �ð1þ enÞ
1
dt

u�n þ
F1

m1
þ F2

m2

 !
: ð36Þ

The transfer equation is

Wnnfn ¼ ð1þ enÞ
1
dt

un þ an: ð37Þ

The intersection of this line with Signorini’s graph occurs
on the vertical branch if an > 0, and this is the case. Hence,
un ¼ 0, and we have uþn ¼ �enu�n and

fn ¼ an ¼ �
1
dt

m1m2

m1 þm2
ð1þ enÞu�n þ

m2F1 þm1F2

m1 þm2

 !

ð38Þ

This is an interesting expression as it shows the two origins
of the total normal force experienced by the contact. The
first term is an impulsive force induced by the impact
velocity u�n and averaged over the time lag dt whereas the
second term is a static force induced by the applied external
forces F1 and F2. The first term vanishes only if the impact
velocity is zero, i.e. if the two particles initially touch. In this
case, we have uþn ¼ 0 so that the two particles stay in con-
tact. The particle velocities can be calculated from the equa-
tions of motion of each particle and the value of fn:
U1þ ¼ U1� þ dtðF1 � fnÞ=m1 and U2þ ¼ U2� þ dtð�F2 þ fnÞ
=m2. In the case U1� ¼ U2� ¼ 0, we get U1þ ¼ U2þ ¼
ðF1 � F2Þ=ðm1 þm2Þ which corresponds to the velocity of
the center of mass of the two particles.

5.2. Multicontact problem

In a multicontact system, the terms ba
n and ba

t in the off-
sets aa

n and aa
t depend on the forces and velocities at con-

tacts b–a; see Eqs. (28)–(31). Hence, the solution for
each contact depends on all other contacts of the system
and it must be determined simultaneously for all contacts.
We will refer to this problem as the global SC problem.

An intuitive and robust method to solve the global SC
problem is to search the solution as the limit of a sequence
ff a

n ðkÞ; f a
t ðkÞ;ua

nðkÞ;ua
t ðkÞg with a 2 ½1;Nc�. Let us assume

that the transient set of contact forces ff a
n ðkÞ; f a

t ðkÞg at the
iteration step k is given. From this set, the offsetsFig. 7. Binary frontal collision between two particles.

Fig. 8. Four snapshots of the normal force network during iterative resolution of the global SC problem. Line thickness is proportional to the normal force.

722 F. Radjai, V. Richefeu / Mechanics of Materials 41 (2009) 715–728



Author's personal copy

faa
nðkÞ; aa

t ðkÞg for all contacts can be calculated through the
relations (28) and (29). The local SC problem can then be
solved for each contact a for these values of the offsets,
yielding an updated set of contact forces ff a

n ðkþ 1Þ;
f a
t ðkþ 1Þg. This correction procedure is equivalent to the

solution of the following local SC problem:

Waa
nnf a

n ðkþ 1Þ � aa
nðkÞ �Waa

nt f a
t ðkþ 1Þ

� �
$S f a

n ðkþ 1Þ; ð39Þ

Waa
tt f a

t ðkþ 1Þ � aa
t ðkÞ �Waa

nt f a
n ðkþ 1Þ

� �
$C f a

t ðkþ 1Þ: ð40Þ

Remark that this force update procedure does not require
the contact velocities ua

nðkþ 1Þ;ua
t ðkþ 1Þg to be calculated

as the offsets depend only on the contact forces. The set
ff a

n ðkÞ; f a
t ðkÞg evolves with k by successive corrections and

it converges to a solution satisfying the transfer equations
and complementarity relations at all potential contacts of
the system. The iteration can be stopped when the set
ff a

n ðkÞ; f a
t ðkÞg is stable with regard to the force update pro-

cedure within a prescribed precision criterion ef :

jf aðkþ 1Þ � f aðkÞj
f aðkþ 1Þ < ef 8a: ð41Þ

Finally, from the converged contact forces, the particle
velocities f~Uig can be computed by means of the equations
of dynamics (14). The efficiency of this iterative scheme
depends on how the information (imposed boundary and
bulk forces or velocities) propagates through the system.
Clearly, the information propagates faster if the updated
contact force ðf a

n ðkþ 1Þ; f a
t ðkþ 1ÞÞ at a contact a is used to

update also the values of the offsets ðab
nðkÞ; a

b
t ðkÞÞ at the

neighboring contacts b that will be treated next. This
sweeping of the contact network might be optimized to
some extent depending on the expected solution.

The iterative procedure depicted above provides a ro-
bust method which proves efficient in the context of gran-
ular dynamics. Note that the information is treated locally
and no large matrices are manipulated during iterations.
Fig. 8 shows several snapshots of the normal force network
in a packing of disks in the course of iterations. The left and
bottom walls are immobile while the top and right walls
are free to move and subjected to the same confining stress
p. The sample is dense and its time evolution is not of
interest here; we rather calculate the forces and velocities
by solving iteratively the global SC problem for this sys-
tem. In the time-stepping scheme this is equivalent to

the resolution of the problem over a single time step. The
initial values of the contact forces are set to zero, i.e.
f a
n ð0Þ ¼ 0 and f a

t ð0Þ ¼ 0 for all a. We see that the informa-
tion (boundary forces) propagates from the walls smoothly
throughout the system with increasing number of itera-
tions (130, 365, 1000 and 2000). If the iterations were
stopped before the full propagation of the information,
the solution would involve strong force gradients.

The evolution of the probability distribution function of
normal forces during iterations is shown in Fig. 9. When
normalized by the average normal force hfni at the con-
verged state, the distribution appears to increase in width
and it becomes stable beyond 1000 iterations but carries
the signature of the well-known exponential shape of
strong contact forces just after a few iterations. The num-
ber Ni of necessary iterations to converge is strongly
dependent on the precision ef but not on dt. Fig. 10 shows
Ni as a function of ef for a given global SC problem in a
packing of 2500 particles with initialization of the forces
to zero. We see that Ni diverges quite fast as ef is de-
creased. It should, however, be noted that the number of
iterations is substantially reduced when the iteration is ini-
tialized with a globally correct guess of the forces. This is
the case in an evolution problem where the forces at each
time step can be initialized with the forces computed at
the preceding step; see Section 6.

The number of iterations is partially controlled by the
special features of force distribution in granular media.
As a result of arching, the probability density function
PðfnÞ of normal forces shows no or weak central tendency.
A small peak is observed when the system is isotropic. But
in all cases the number of forces tends either to a finite va-
lue Pð0Þ as fn ! 0 or diverges (Radjai et al., 1997b; Mueth
et al., 1998; Radjai et al., 1999; Antony, 2001; Silbert
et al., 2002; Kruyt, 2003; Metzger, 2004; Majmudar and
Behringer, 2005; Richefeu et al., 2006; Azéma et al.,
2007; Kruyt and Antony, 2007). Hence, a huge number of
contacts (nearly 60% in a weakly polydisperse packing)
carry small forces whereas the strong forces are less in
number but exponentially distributed. It is important to re-
mark that the weak forces cannot simply be neglected as
they play an organic role in the overall stability of the
assembly (Radjai et al., 1998). Due to the absence or weak-
ness of central tendency, an increasing number of weak
contacts should be resolved as ef is decreased, requiring
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Fig. 9. Probability distribution function of normal forces at the four
iteration steps shown in Fig. 8. The arrow points in the direction of the
increasing number k of iterations.
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Fig. 10. The number of iterations Ni as a function of the precision
criterion ef in iterative resolution of the global SC problem when the
forces are initialized to zero.
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thus an increasingly larger number of iterations. In sum,
for a prescribed precision ef , the forces below ef hfni are
not correctly calculated. This provides a physical criterion
which may be employed to calibrate the required precision
in dealing with a specific problem.

A high precision over forces might be required when the
static equilibrium of a packing is studied. During a quasi-
static flow, a high precision is necessary in the investiga-
tion of transition between successive states separated by
small time intervals dt. The trajectory is all the more deter-
minist as the precision on forces, and hence on velocities,
is high. For longer evolutions, when some degree of ergo-
dicity may be assumed, it might be physically justified to
consider lower precision in each step at the level of the
resolution of the global SC problem. The choice of the
precision can be combined with a more or less large
time-step dt.

It should also be briefly mentioned that the uniqueness
of solution of the global SC problem in a multicontact sys-
tem is not proved. We have 3Np equations of dynamics and
2Nc complementarity relations. The unknowns of the prob-
lem are 3Np particle velocities and 2Nc contact forces. Since
there are equal numbers of unknowns and dynamic or con-
tact relations, and since the solution of the local SC prob-
lem is unique, the global solution could have been
unique, too. The point is that the 2Nc contact complemen-
tarity relations are not equations but inequations. Thus, the
extent of indeterminacy of the solution reflects all possible
combinations of contact forces accommodating the com-
plementarity relations.

In fact, the CD method provides a suitable framework to
study the indeterminacy of granular assemblies by search-
ing self-equilibrated solutions with external forces and
particle velocities set to zero in the expressions of aa

n and
aa

t ; Eqs. (28) and (29). For a given configuration of particles,
the standard SC problem can thus be solved by setting
external forces and particle velocities to zero and for an
ensemble ff a

n ð0Þ; f a
t ð0Þg varied according to a statistical dis-

tribution. The ordering of the sequence of updated contacts
during the iterative procedure may also affect the solution.
It happens that for a generically disordered granular sys-
tem, self-equilibrated solutions can not be found unless
in small partially or totally ordered systems. This implies
that the CD treatment of a granular assembly involves
practically no indeterminacy. Thus, if slightly different
solutions are found according to the iteration method em-
ployed, they should be attributed to the lack of precision
below the convergence criterion ef , affecting mainly the
very weak contacts. The indeterminacy can be studied also
analytically by considering the null space of the contact
matrix H (Radjai et al., 1996a; McNamara et al., 2005).
The degree of indeterminacy may be high, but it does not
imply significant force variability since the solutions are
restrained by the complementarity relations. This is also
consistent with a common observation in CD simulations
that the force fluctuations, when they occur, are basically
of impulsive nature and not spurious effects that could
be attributed to the presence of scale-free self-stresses.

Finally, a few words about the role of the restitution
coefficient en is useful. In a binary collision, the contact
opening is fully controlled by en as in the simple example

discussed in Section 5.1. The situation is different in a mul-
ticontact system where a contact can open even if u�n ¼ 0.
In other words, contact opening is governed by the multi-
contact dynamics and not only by the local restitution. In
contrast, contact closing, i.e. the creation of a persistent
contact, depends only on the local restitution coefficient.
This is because, according to Eq. (7), with en > 0 the condi-
tions uþn ¼ 0 and u�n < 0 imply un < 0 which contradicts
Signorini’s conditions. Hence, in the CD method a collision
between two particles leads to the creation of a persistent
contact only if en ¼ 0.

The problem of multiple shocks is a complex issue that
should be treated at very small time scales of elastic waves,
and this is out of the scope of the contact dynamics model
which was designed to find mechanically admissible solu-
tions of multicontact dynamics at much larger time scales.
Experimental observation, however, suggests that in a
multicontact system multiple shocks may occur and dissi-
pate the whole kinetic energy at very short times so that
the effective restitution coefficient should indeed be set to
zero (Luding et al., 1994a,b; Dippel et al., 1996; Cruz
et al., 2005). This effect is the reminiscence of inelastic col-
lapse (McNamara and Young, 1992). When the time incre-
ment dt is large enough compared to the characteristic
time of successive collisions, the choice en ¼ 0 is relevant.
In dense systems, this choice allows for the opening and
closing of contacts due to multicontact dynamics. In a
loose assembly, the time scales are different and the effec-
tive restitution coefficient might be nonzero for coarse-
grained dynamics.

It should also be mentioned that the restitution coeffi-
cients en and et in binary collisions are not pure material
parameters but depend on the surface geometry and im-
pact velocity (Lun and Savage, 1986; Kuwabara and Kono,
1987; Smith and Liu, 1992; Foerster et al., 1994; Labous
et al., 1997; Luding, 1998; Brilliantov et al., 2004, 2007).
There is no fundamental difficulty in taking such effects
into account in a CD algorithm. This is also true for the
coefficient of friction l which may depend on the sliding
velocity. It should, however, be remarked again that the
manifestation of physical effects of this kind is different
under multicontact conditions with respect to binary
interactions.

6. Time-stepping scheme

The global SC problem may well occur as an event at
particular instances of a granular flow. The iterative resolu-
tion method presented above can then be applied to calcu-
late the contact forces and particle velocities at those
instances. Hence, the global SC problem may be embedded
in an event-driven algorithm which can be a useful ap-
proach in certain circumstances. The global SC problem
may also be considered for the estimation of the stability
of a static assembly of particles. In the CD method, the glo-
bal SC problem is associated with a time-stepping scheme.

In order to set up this scheme, we need to come back to
the contact laws and remark that the first condition of the
Signorini relation in (3) is the only condition referring
to space coordinates. Actually, the SC problem was
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formulated at the velocity level for both dynamics and con-
tact laws, and the first Signorini condition was accounted
for by assuming that only the potential contacts, where
dn 6 0, were involved in the SC problem. In other words,
the contact network is defined explicitly from particle
positions in a SC problem and it will no more evolve during
the coarse-graining time interval dt.

Another important feature of the global SC problem is
the prospective character of the treatment expressed by
the second condition of a complete contact law (5). This
means that the right-limit velocities are calculated such
that the complementarity relations will not be violated
by the subsequent motion of the particles. This condition
is achieved through an appropriate definition of the mean
velocities un and ut in Eqs. (7) and (10) entering the com-
plementarity relations. In other words, the treatment is
fully implicit and the right-limit velocities f~Uiþ;xiþg may
be used to increment particle positions.

The above two remarks devise the following time-step-
ping scheme. Let t and t þ dt be the considered time inter-
val. The configuration f~riðtÞg and particle velocities
f~UiðtÞ;xiðtÞg are given at time t. The latter play the role
of left-limit velocities f~Ui�;xi�g in the global SC problem.
The contact network fa;~na;~tag is set up from the configu-
ration at time t or from an intermediate configuration
f~ri

mg defined by

~ri
m �~riðtÞ þ dt

2
~UiðtÞ: ð42Þ

When this configuration is used for contact detection,
other space-dependent quantities such as the inverse mass
parameters Waa

k1k2
and external forces ~Ui

ext should consis-
tently be defined for the same configuration and at the
same time t þ dt=2.

Then, the global SC problem is solved iteratively over
the contact network and the right-limit particle velocities
f~Uiþ;xiþg are calculated. The latter correspond to the
velocities at the end of the time step t þ dt:

~Uiðt þ dtÞ ¼ ~Uiþ; ð43Þ
xiðt þ dtÞ ¼ xiþ: ð44Þ

Finally, the positions are updated by integrating the up-
dated velocities:

~riðt þ dtÞ ¼~ri
m þ

dt
2
~Uiðt þ dtÞ; ð45Þ

hiðt þ dtÞ ¼ hi
m þ

dt
2

xiðt þ dtÞ: ð46Þ

This scheme is unconditionally stable due to the impli-
cit discretization. Hence, no damping parameters at any le-
vel are needed. For this reason, the time step dt can be
large. The real limit imposed on the time step is the occur-
rence of cumulative numerical errors leading to undesired
excess overlaps between the particles. Of course, such
overlaps have no dynamic significance in the CD method,
but they falsify the geometry and thus the evolution of
the system. By construction, if there are initially no over-
laps between the particles, the contact dynamics ensures
that no overlaps will occur in the course of evolution. But
the particle positions are secondary in the CD method

and they are updated from the integration of the velocities.
Even for a high precision ef , the calculated velocities and
contact forces by solving the SC problem involve some
numerical imprecision that may lead to excessive overlaps
at a number of contacts in the long run. Hence, to avoid
such effects, one requires both a sufficiently high precision
and rather small time steps. In high-quality simulations of
shear flow with ’ 104 particles, the typical value of the
time step is ’ 10�4 s. This value is by several orders of
magnitude larger than the usual values of the time step
in MD simulations. It should also be borne in mind that
the time step dt is not a precision criterion for the evolu-
tion problem in the CD method. The precision is mainly
controlled by ef . The time step should rather be considered
as a coarse-graining parameter for nonsmooth dynamics. It
should be reduced if the impulse dynamics at small time
scales is of interest.

An important feature of granular dynamics is the occur-
rence of highly nonlinear and subtle transitions at small
time scales. These short-time phenomena include sharp
impulsive transitions, collective rearrangements and fric-
tional interlocking. As a result, the dynamics over succes-
sive time steps needs variable treatment. For a rather
smooth evolution less effort should be consumed than
when a major rearrangement event takes place. In the CD
simulations, the number of iterations represents the re-
quired effort at each step. For the same level of precision,
the number of iterations varies considerably in the course
of time stepping. One example is shown in Fig. 11. It can be
checked that, if the initializing forces at each step are re-
trieved from the last step, the number of iterations is cor-
related with dynamic events. Hence, in the CD method
subtle rearrangement events are always calculated with
the required high precision. In some cases, a maximum
number of iterations may be imposed in order to increase
efficiency, but this is equivalent to reducing precision
when a larger number of iterations are necessary. More-
over, incomplete relaxation leads to wave-like perturba-
tions in time evolution (Unger et al., 2002).

7. Concluding remarks

In this paper, the basics of the CD (contact dynamics)
method for discrete element simulation of granular

0 200 400
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i

Fig. 11. The number of iterations Ni as a function of time step during a
shear flow. The imposed minimum and maximum numbers of iterations
are marked by dashed lines.
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materials were presented. This method can be viewed as
the algorithmic formulation of nonsmooth granular
dynamics at the scale of particle rearrangements where
small elastic response times and displacements are ne-
glected. Two major issues arising in this context are trea-
ted in the framework of the CD method: (1) The contact
laws expressed as complementarity relations between
the contact forces and velocities and (2) The nonsmooth
motion involving velocity jumps with impulsive unre-
solved forces as well as smooth motion with well-resolved
static forces. A consistent description of the dynamics at
the velocity level leads naturally to an implicit time-step-
ping scheme together with an explicit treatment of the
evolution of the contact network. Most concepts developed
in this formulation are rather intuitive although they rely
on a sound mathematical background of nonsmooth
dynamics and convex analysis.

The focus of this paper was on the intuitive features of
the CD method with respect to subtle collective phenom-
ena involved in the multicontact dynamics of granular
media. In particular, we discussed the role of the coarse-
graining time dt, the precision issue in the iterative proce-
dure for the resolution of the global SC (Signorini-Cou-
lomb) problem with respect to force distributions, and
the relevance of the coefficients of restitution en and et

and their interpretation in a multicontact system. The CD
method is characterized by its unique feature of bringing
together in the same formalism two limit regimes of gran-
ular dynamics: (1) collisional regime governed by binary
shocks and incomplete energy restitution and (2) static re-
gime governed by multiple contacts, geometrical disorder,
force balance and dynamic rearrangements. Hence, this
method provides a suitable framework for the investiga-
tion of dense granular flows where smooth evolutions are
intermingled with sharp transitions.

The CD method can also be considered as an adequate
framework for the numerical treatment of frictional con-
tact problems. Indeed, the Coulomb friction and perfectly
rigid contact condition are implemented in an exact form,
i.e. without introducing artificial penalization parameters
or damping. Given a contact network, all kinematic con-
straints implied by contact laws are simultaneously taken
into account together with the equations of dynamics in
order to determine the velocities and contact forces in
the system. This global SC problem is solved by an iterative
process pertaining to the Gauss-Seidel iterative method
that consists of solving a single SC problem at each contact,
and successively and iteratively updating the forces until a
convergence criterion is fulfilled (Jeffreys and Jeffreys,
1988). The method is thus capable of dealing properly with
the nonlocal character of the momentum transfers result-
ing from the impenetrability of the particles. It can be em-
ployed to study stiff systems for which smooth MD-like
methods require small time steps for numerical stability
and the stiffness matrix may become ill-conditioned as
the contact network evolves.

The CD method is unconditionally stable due to its
inherent implicit time integration scheme. The uniqueness
of the solution at each time step is not guaranteed for per-
fectly rigid particles. However, the variability of admissible
solutions is generally below numerical precision. The vari-

ability resulting from numerical precision can be reduced
and the calculations significantly accelerated by initializing
the iterative procedure at each step with the forces com-
puted in the preceding step.

The basic algorithm presented in this paper can be (and
has been) extended to deal with richer contact laws, vari-
ous particle shapes and more efficient resolution of the
global SC problem in 2D and 3D. Several variants of the
time-stepping scheme can be found in Jean (2001) and a
parallelization strategy in Renouf et al. (2004). The contact
laws can be supplemented with a complementarity rela-
tion between a torque and a contact spin variable (Bratberg
et al., 2002). Using such a complementarity relation, the
rolling friction is easily implemented in this framework.
Adhesion forces can be introduced by a simple shift of
the complementarity relations:

un$
S

fn � f a
n ; ð47Þ

ut$
C

ft ; ð48Þ

where f a
n is the adhesion threshold. Particle deformability

can also be treated in the CD method by associating strain
variables to the particles rather than to the contacts. The
strains can be defined either from rigid-body degrees of
freedom, as in the MD method, or associated with new
internal degrees of freedom. Concerning particle shapes,
it is a generic feature of the CD method that, in contrast
to force laws, the nature of the contact complementarity
relations does not depend on the particle shape. Hence,
the solver which takes in charge the resolution of the global
SC problem is independent of the particle shape. The po-
tential face-face or face-edge contacts are represented by
three or two points which are treated as independent point
contacts by the solver (Saussine et al., 2006; Azéma et al.,
2009). The basics of the method are the same in 2D
and 3D. The only difference lies in the treatment of the
tangential force whose direction is an unknown of the SC
problem and is determined in the course of the iterative
procedure.

A particular attention should be paid to the origin of the
contact forces in the CD method. An example is the uniax-
ial compression of a dense granular material by imposing a
constant velocity on a wall. In the MD simulation of this
problem, the displacement of the wall causes mainly the
elastic deformation of the particles and the contact forces
increase accordingly. In the CD simulation of the same
problem, since the contact laws involve no force scale
and no static boundary or bulk force are applied, the force
scale is fixed by the imposed velocity through the impul-
sive terms in Eqs. (28) and (29). Since no rearrangements
can occur due to a too high density, the corresponding ki-
netic energy is not dissipated. This energy increases adia-
batically, the contact forces increase proportionally to the
displacement and the particles interpenetrate. In contrast,
if the uniaxial compression is controlled by an increasing
boundary force, the contact forces increase in proportion
to the applied force as in MD simulations, and, in the ab-
sence of particle rearrangements, the contact reaction
forces balance exactly the driving force so that the packing
stays indefinitely in static equilibrium. In the MD ap-
proach, the static forces are fully encoded in the particle
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positions with a scale given by the stiffness. In the CD ap-
proach, there is no such force scale and thus the static force
scale should be defined externally.

Finally, a future work on the coarse-grained granular
dynamics might help to get more insight into the dissipa-
tive and impulsive phenomena that are modeled by their
average effects in the CD method. The suggestion is to ap-
ply the same methodology as in Radjai and Roux (2002) in
order to evaluate the influence of time resolution. One can
first perform a standard MD simulation of a shear flow,
then take averages over the dynamics for a given integra-
tion time dt and finally compare this coarse-grained
dynamics with CD simulations of the same flow with a
time step dt. Repeating this procedure for several values
of dt, will allow us to appreciate the CD method and com-
pare it in a meaningful way with the MD method.
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