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Particle fracture regimes from impact simulations
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We introduce an approach to particle breakage, wherein the particle is modeled as an aggregate of polyhedral
cells with their common surfaces governed by the Griffith criterion of fracture. This model is implemented
within a discrete element code to simulate and analyze the breakage behavior of a single particle impacting a
rigid plane. We find that fracture dynamics involves three distinct regimes as a function of the normalized impact
energy ω. At low values of ω, the particle undergoes elastic rebound and no cracks occur inside the particle.
In the intermediate range, the particle is damaged by nucleation and propagation of cracks, and the effective
restitution coefficient declines without breakup of the particle. Finally, for values of ω beyond a well-defined
threshold, the particle breaks into fragments and the restitution coefficient increases with ω due to kinetic energy
carried away by the fragments. We show that particle damage, restitution coefficient, and fracture efficiency (the
amount of energy input consumed for particle fracture) collapse well as a function of dimensionless scaling
parameters. Our data are also sufficiently accurate to scale fragment size and shape distributions. It is found that
fragment masses (volumes) follow a power-law distribution with an exponent decreasing with fracture energy.
Interestingly, the average elongation and flatness of fragments are very close to those observed in experiments
and lunar samples at the optimal fracture efficiency.
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I. INTRODUCTION

Particle breakage is a commonly observed phenomenon
in natural flows and industrial processes involving powders
and grains [1–5]. Particle breakage is usually undesirable, but
it also represents the goal of milling operations, which are
known for their energy intensive nature. Despite extensive
past research, particle breakage mechanisms in granular mate-
rials remain poorly understood due to their multiscale nature,
involving material subparticle scales to particle scales, and up
to the packing and process scales [6–9]. The fragmentation
of particles is controlled by the mechanical properties of the
particles and their contacts, on one hand, and the process op-
erational factors, on the other hand [10–15]. For instance, the
distribution of fragment sizes during the grinding process in
ball mills is influenced by the cohesive strength of single par-
ticles, numbers and sizes of grinding balls, amount of granular
material, and other system parameters [14,15]. The particles
can break under various loading modes such as compres-
sion, distortion, shear, and impact. Different fracture modes
generally take place simultaneously during a comminution
process in different parts of the system [16]. To model particle
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breakage, an important issue is therefore to identify physical
mechanisms at different scales: subparticle processes at the
origin, the strength and potential weaknesses of particles,
single-particle fracture by impact or forces exerted by other
particles, collective dynamics of particles, and process-scale
mechanisms of energy supply to the particles.

Experimental studies of single-particle fragmentation have
been carried out to analyze the fragment mass and size distri-
butions, crack patterns, and failure modes. The masses in the
range of small fragments are often found to follow a power-
law distribution with exponents that do not always seem to
be universal, but depend on the brittle or ductile nature of
fracture and dimensionality of the object [9,17–23]. A gen-
eral observation is that during impact between two particles,
plastic deformation develops first around the contact point,
then cracks appear and propagate through the particle, and
eventually split the particle [17,24]. A part of the supplied
energy is consumed in producing new fracture surfaces inside
the particle, while a large amount of the supplied energy is
also taken away in the form of the kinetic energy of the frag-
ments after collision and dissipated by plastic deformations
and frictional or inelastic collisions. Impact-induced fragmen-
tation was found experimentally to generate elongated shapes
characterized by the dimensions a, b, and c of their bounding
box. In several reported investigations, the ratios were found
to be distributed around the proportions a : b : c � 2 :

√
2 : 1

[25–28].
Due to the inherent complexity of the experimental mea-

surement of dynamic fracture of a single particle or the
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evolution of a collection of particles in real time, particle
dynamics simulations based on the discrete element method
(DEM) have also been developed as an alternative approach
for the investigation of particle breakage in granular materials.
For example, experimental findings of fragment size distribu-
tions were reproduced by such simulations [29–32]. Important
results were obtained by DEM simulations, such as crossover
from a damaged state to the fragmented state at a well-defined
value of impact energy [10,27,33–35]. The critical point of
this transition was identified as the impact velocity for which
the average fragment mass takes a maximum value [35,36].
The effects of material properties such as interface energy on
the fracture pattern were also investigated [37,38].

A DEM-based model extensively used for particle frag-
mentation is known as the bonded particle method (BPM) that
simulates a parent particle as an aggregate of spherical par-
ticles [12,32,38,39]. For primary spheres, since the external
boundary of the aggregate is used to represent the particle sur-
face and the aggregate is porous, the volume is not conserved
during fragmentation. In contrast, the primary polyhedra can
fill the volume of a particle with zero porosity and no volume
is lost during particle breakage [36,40–42]. Furthermore, in
a cluster of polyhedra, the bonds coincide with the common
surfaces between polyhedra, so that the breakage of a bond
naturally creates a fracture surface. Particle tessellation into
contiguous polyhedra was coined the bonded cell method
(BCM) [40]. In BCM, each face-face interaction represents
a potential crack and the fracture energy is obtained by mul-
tiplying the area by surface energy [40,42]. The cell-meshed
particles, when they are randomly distributed, allow for ar-
bitrary fragment shapes if the number of primary polyhedra
composing the particle is sufficiently high [40].

Particle fracture by BCM requires a fracture criterion. Nu-
merical studies reported in the literature are generally based
on force or stress thresholds which lead to brittle behavior,
while fracture mechanics requires a model fully based on
energy [12,27,32,36,40,41]. In their model of a thermody-
namically consistent breakup model, Orozco et al. [42] used
a criterion based on the fracture energy in the framework
of the contact dynamics method (nonsmooth DEM), which
does not account for elastic deflections at the contact points
[43]. For this reason, the debonding criterion was based on
the amount of energy absorbed by an interface and it was
postulated that an interface between two adjacent cells breaks
if the total amount of energy exceeds the fracture energy.
Using this criterion, they were able to scale particle breakage
as a function of the impact energy in three-dimensional (3D)
single-particle impact and the evolution of grinding in ball
mills [14,42].

In this paper, we use BCM with a fracture law that is based
on the Griffith criterion of crack propagation by accounting
for elastic energy release in each interface. In other words,
the initial formulation of this criterion in terms of the incre-
mental creation of a new fracture area is coarse grained for
application to finite surface creation. Thus a cell-cell interface
breaks only if the total elastic energy stored per unit interface
area exceeds two times the specific fracture energy. We in-
vestigate in detail the breakage of a single particle impacting
a rigid plane by means of extensive simulations. We analyze
particle damage, fracture efficiency, and restitution coefficient

FIG. 1. Particle model generated by Voronoi tessellation with
1728 polyhedral cells represented by different colors.

as a function of impact energy. We propose functional forms
that capture well the behavior in each fracture regime and
transition between different regimes and we compare our data
with those of Orozco et al. [42]. We also have enough data to
analyze the resulting fragment size distributions and particle
shapes. As we shall see, our findings are consistent with pre-
vious studies, but they provide a more general picture in the
range of weak impact velocities where rebound and damage
of the particle occur without particle fragmentation.

In the following, we first introduce, in Sec. II, the frac-
ture model, boundary conditions, and parameters of impact
simulations. The fracture regimes are analyzed in terms of
particle damage, fracture efficiency, and effective restitution
coefficient in Sec. III as a function of impact parameters. In
Sec. IV, we show that the fracture variables and regimes scale
with the ratio of impact energy to cohesion energy. In Sec. V,
we analyze the distributions of fragment shapes and sizes.
Finally, we discuss the most salient results of this work in
Sec. VI.

II. BONDED CELL METHOD AND RUPTURE MODEL

A. Voronoi tessellation

We use the bonded cell method (BCM) based on the di-
vision of the particle into polyhedral cells interacting with
their neighboring cells via an interface characterized by a
fracture energy. Each particle is divided into 1728 cells by
Voronoi tessellation using the NEPER software [44]. One pos-
sible technique to construct the centroidal Voronoi tessellation
is known as the Lloyd’s method, which simply alternates be-
tween constructing Voronoi tessellations and mass centroids
[41,45,46]. An example of the particle model composed of
polyhedral cells is shown in Fig. 1. For the sake of geometri-
cal consistency between the shape of the parent particle and
its constitutive polyhedral cells, we use a truncated pentakis
dodecahedron shape composed of 92 faces involving 12 regu-
lar pentagons, 20 regular hexagons, and 60 mirror-symmetric
hexagons. The cells (primary particles) have random sizes and
shapes, but they are always convex and share their faces with
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FIG. 2. Distributions of the aspect ratios and sizes of primary
particles.

their neighboring cells. A key numerical parameter of BCM
is the number of cells in the particles (both the parent parti-
cle and its progeny) to ensure arbitrary fragment shapes and
a meaningful range of fragment sizes. For instance, several
phenomena such as particle shattering, surface breakage, and
damage without breakage are well captured by the simulation,
but the number of cells must be sufficiently high to avoid
fragment shapes after shattering that are controlled by initial
Voronoi tessellation [14,40]. It has also been observed that
the fracture process is influenced by the number of cells if it
is below 100 [14,41].

Figure 2 displays the size and shape distribution of the pri-
mary particles generated by Voronoi tessellation. The aspect
ratio of a cell is defined as the ratio of the longest dimension
to the shortest dimension of its bounding box. The diameter of
a cell is defined as the diameter of a sphere having the same
volume as the polyhedral cell. We see that the aspect ratios
of cells range between 1 and 1.3, with a mean value around
1.2. Cell diameters mostly range from 0.16 to 0.17 mm, so
that the cell sizes are approximately equal. The sizes of the
parent particle and cells are the upper and lower bounds,
respectively, of the size distribution of fragments in the debris
generated by particle fracture. The statistical representativity
of the distribution of fragment sizes in the process of fragmen-
tation depends therefore on their ratio. It is also noteworthy
that BCM makes it possible to account for subparticle defects
(pores, precracks, etc.) and other inhomogeneities (cell size
gradients, cell shapes, etc.) by means of biased tessellation of
the particle. In our simulations, the particle is assumed to be
homogeneous and defectless, with the goal of concentrating
on the fracture regimes.

B. Interactions between polyhedra

In our simulation model, primary polyhedral cells are
smoothed by means of a Minkowski sum with a sphere of
desired radius (Minkowski radius). As a consequence, each
polyhedron consists of three subelements, namely, the ver-
tex which is a small sphere, the edge which is a cylinder
connecting two vertices, and the face which is a plane con-
necting at least three vertices. The contacts between two
polyhedra are represented by the contacts of its subelements,
leading to six contact types, such as vertex-face, edge-edge,

FIG. 3. Different types of contacts between two polyhedra:
(a),(b) simple contact, (c) double (edge-face) contact, and (d) triple
(face-face) contact.

vertex-edge, vertex-vertex, edge-face, and face-face interac-
tions. The unilateral constraints associated with these contact
types do not have the same dimension. The vertex-face,
vertex-edge, vertex-vertex, and edge-edge interactions involve
a single contact point, which can be handled in the same way
as contacts between spherical particles. Such simple contacts
represent a single unilateral constraint; see Figs. 3(a) and 3(b).
In contrast, a face-face contact is a plane that needs at least
three points for its definition. Therefore, a face-face contact
is equivalent to three simple contacts or unilateral constraints
[43,47,48]. This implies that at least three contact points are
necessary to represent a face-face contact between two rigid
polyhedra. Note that the number of contact points can be
larger than 3 depending on the number of edges, but the
number of independent constraints is always 3; see Fig. 3(d).
In a similar vein, full representation of an edge-face interac-
tion needs at least two contact points; see Fig. 3(c). Thus the
edge-face and face-face contacts can be described as “double”
and “triple” contacts, respectively.

The Voronoi tessellation of the parent particle leads to a
configuration of polyhedral cells that have face-face, vertex-
vertex, and parallel edge-edge contacts. We consider only the
face-face contacts to define cohesive interfaces. The edge-
edge and vertex-vertex contacts in the cell configurations are
assumed to carry no surface energy and are neglected since the
internal cohesion of the particle is carried by the interfaces.
However, as the interfaces break and the generated fragments
move during particle fracture, other contact types may appear
and they will be treated as frictional cohesionless contacts due
to the irreversible nature of fracture.

At each contact point between cells, either a linear or a
nonlinear force law can be implemented. For smooth particle
surfaces with well-defined curvatures at the contact point,
the Hertz law can be used. However, in this paper, due to
the faceted shapes of the cells, we use the linear elastic law
which is equivalent to a linear spring acting on the contact
point. This means that the behavior of the particle as a whole
is linear elastic. Note also that since the cells are treated as
rigid bodies, the particle volume changes are only due to the
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overlaps between cells and the particle has a linear elastic
behavior as a whole.

Let �n and �t be the normal and tangential unit vectors at a
contact point c between particles i and j. The force �f = fn�n +
ft �t acting by particle j on particle i at this point of the interface
is expressed as a function of the normal relative displacement
(overlap) δn and cumulative tangential displacement �δt . The
normal force law is expressed as [49,50]

fn = −knδn − 2α
√

knm δ̇n, (1)

where kn is the normal stiffness of intercell bonds, δn is the
normal displacement (with the sign convention that δn < 0
is an overlap and δn > 0 is a gap), δ̇n is the relative normal
velocity, m is the reduced mass of the two particles, and the
dimensionless damping number α takes a value between 0
and 1. The viscous damping term accounts for normal en-
ergy dissipation and α is a function of the normal restitution
coefficient en [51–54],

α =
⎧⎨
⎩

− log en√
(log en )2+π2

for 0 < en � 1

1 for en = 0.

(2)

It is useful to remember here that the use of viscous damping
does not mean that the real source of dissipation is the vis-
cous behavior of the particles. In DEM, the normal restitution
coefficient is a convenient physical parameter that accounts
for contact inelasticity. However, the method used to impose
its value between 0 and 1 is not essential as long as it does
not produce artifacts depending on the context. The tangential
force is given by [43,55,56]

�ft = −kt �δt − 2α
√

knm �vt , (3)

where kt is the tangential stiffness, and �vt = �̇δt is the relative
tangential velocity. For internal bonds between cells, there
is no friction unless the interface fails and transforms into a
frictional contact; see below. Hence, as long as an interface
between two cells has not failed, the only source of dissipation
is viscous damping.

C. Rupture criterion

Thermodynamically, the creation of cohesionless surface
and crack propagation obeys the Griffith criterion. Accord-
ing to this criterion, a crack propagates if the rate of elastic
potential energy released by surface creation is above the
fracture energy. The Griffith formulation is based on a dif-
ferential criterion with the assumption that crack growth is a
continuous process. Hence, it cannot be applied as such to a
cell-cell interface of finite area S in BCM. For this reason,
a “coarse-grained” form of the energy criterion should be
applied by considering a finite variation �Wp of the elastic
energy. This condition for the creation of a surface equal to S
can be expressed as [14,57]

−�Wp

2S = G � Gc, (4)

where Gc is fracture energy per unit surface, the so-called
toughness, and G is the energy release rate.
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FIG. 4. Strength envelope of a single contact point belonging to
an interface between polyhedral primary cells.

Since the elastic energy associated with the interface
vanishes when the bond fails, �Wp is actually the total po-
tential elastic energy of the interface. Furthermore, since the
compressive failure threshold is very high compared to the
threshold in tension, we set the threshold in compression to
infinity. Hence, �Wp must involve only the forces in tension,

�Wp =
∑
i∈S

[
f 2
ni

2kn
H (δni ) + f 2

t i

2kt

]
, (5)

where H (δni ) is the Heaviside function defined by

H (δni ) =
{

0 if δni � 0
1 if δni > 0.

(6)

This assumption implies that compressive forces do not con-
tribute to fracture. Figure 4 shows a strength envelope based
on Eqs. (4) and (5). This envelope is simplified by considering
a single contact point belonging to the interface. Since the
interface involves at least three contact points, the strength
envelope should be represented in a six-dimensional space.

Once G � Gc, the cohesive bond fails and all contacts
of this interface become frictional without cohesion. If the
gap created as a result of interface deformation is nonzero
(δn > 0), the normal and tangential forces are both zero and
the newly created contact is open. Otherwise (δn � 0), the
contact remains active and the relation between the normal
force fn and the overlap δn is given by Eq. (1). Note that
when the viscous damping term makes fn negative, we set fn

to zero. This is necessary to avoid negative normal forces at
cohesionless contacts [58]. In our simulations, we also set the
restitution coefficient en for frictional contacts to a value close
to zero, while the restitution coefficient for internal bonds
between cells is high; see Table I.

The tangential force at frictional contacts is governed by
the Coulomb friction law,

ft = min{|kt �δt |, μs fn}, (7)

where kt is tangential stiffness of the frictional contact, and
μs is the interparticle friction coefficient. The orientation of
the tangential force �t is opposite to either the relative elastic
displacement �δt below the Coulomb threshold or the relative

044907-4



PARTICLE FRACTURE REGIMES FROM IMPACT … PHYSICAL REVIEW E 109, 044907 (2024)

TABLE I. Simulation parameters for impact test of a particle
with a rigid plane.

Parameter Symbol Value Unit

No. cells Nc 1728
Particle density ρs 6000 kg/m3

Gravity acceleration g 0 m/s2

Impact velocity v0 [0.5;10] m/s

For frictional contacts:
Normal stiffness kn 108 N/m
Tangential stiffness kt 8 × 107 N/m
Restitution coefficient e2

n 0.001
Friction coefficient μs 0.3

For cohesive bonds between cells:
Normal stiffness kn 107 N/m
Tangential stiffness kt 0.8 × 107 N/m
Restitution coefficient e2

n 0.999
Fracture energy Gc [0.2;2.0] J/m2

velocity �vt at the contact point when the Coulomb threshold is
reached.

D. Impact parameters

We performed 3D impact tests of a single particle with a
rigid plane. The particle is placed close to the horizontal plane
and given an initial velocity v0. The impact energy (kinetic
energy before collision) is varied by changing the impact
velocity in the range given in Table I. This wide variation of
v0 allows us to investigate particle fracture as a function of
impact energy varying over at least two orders of magnitude.
The parent particle diameter is 2 mm in all tests. Each im-
pact test was repeated five times, each with a different and
independent tessellation of the particle into cells. All the data
points presented in this paper correspond therefore to average
values over the five tests, with an error bar representing their
standard deviation. We note that the point of impact with the
plane should be random to allow the particle to fall on a face,
edge, or vertex. To avoid systematic errors due to this effect,
we rotated the particle in a random direction with a random
angle before each impact test. As we shall see below, the error
bars are generally small, meaning that particle orientation has
little effect on the fragmentation process.

For the parametric study of fracture regimes, we also
changed the value of the fracture energy Gc from 0.2 to
2 Jm−2. This range is broad enough to allow us to analyze
its effect on fracture regimes and the scaling of the fracture
data in combination with impact energy. All other system
parameters were kept constant and their values are shown
in Table I. The parameters are different for cohesive bonds
between cells, which encode the internal mechanical behavior
of the particles, and for frictional contacts between fragments.
In particular, the restitution coefficient en is set to a value
(0.999) close to 1 between cells in order to minimize internal
dissipation due to inelasticity, in contrast to previous simula-
tions in which en between cells was set to zero. It would have
been possible to set en = 1, but we kept the possibility of a
small amount of internal dissipation in order to see whether
it can have a significant effect on the behavior. As we shall

see, this is not the case. In contrast, the restitution coefficient
between fragments and between the fragments and the bottom
wall was set to a value (0.001) very close to zero in order to
better identify the source of the overall restitution coefficient
ek of the particle due to the transfer of kinetic energy to the
fragments when the particle breaks. The effect of the restitu-
tion coefficient at the impact point between the particle and the
bottom walls on the fracture behavior requires an independent
investigation.

The friction coefficient μs was set to 0.3 between frag-
ments. This is a typical value of friction coefficient in most
materials. The friction coefficient between cells before frac-
ture is not defined since cell-cell interfaces are governed by
elastic interactions. We do not expect μs to play a significant
role in impact tests since we consider a head-on impact and
the generated fragments after impact follow mainly diverging
trajectories. The gravity g is zero. As a result, the kinetic
energy of the particle is fully determined by its initial velocity.
The initial kinetic energy also depends on the particle density
ρ, which was set to 6000 kg m−3 to mimic high-density
metal oxides, although its effect on impact tests is physically
expressed through the impact energy. The normal stiffness
kn was set to a high enough value to avoid large overlaps
between fragments and between the particle and rigid plane.
The largest overlap occurs for the highest impact energy. We
therefore set kn for frictional contacts to 108 Nm−1, which
leads to an overlap � 0.0025d with the rigid plane, where
d = 2 mm is the diameter of the particle. Since the cells inside
the particles receive much lower kinetic energies due to en-
ergy dissipation and their large number inside the particle, we
set kn between cells to a value 10 times lower. The tangential
stiffness was set to kt = 0.8kn for the interface between cells
and for frictional contacts, corresponding to the Poisson ratio
ν = 1/3, which is a typical value for many materials [59].
Note that the effect of kn on fracture is through the expression
of energy release rate G in Eqs. (4) and (5).

III. PARTICLE FRACTURE REGIMES

During an impact, part of the initial kinetic energy W −
k =

mv2/2 of the particle is transmitted to the fragments. Note that
v is the precollision velocity of the particle. Since the particle
is placed very close to the rigid plane, we have v � v0. Let
W +

k be the total kinetic energy of the fragments after collision.
The difference, Wd = W −

k − W +
k , is consumed in fracture and

other dissipative interactions, including friction and inelastic
collisions between fragments and with the rigid plane. If A is
the total cohesionless surface area created during fracture, the
total fracture energy is given by

Wf = 2AGc. (8)

We also define the total surface energy Ws = 2A0Gc, which
is the total energy required to break all interfaces of the total
initial area A0. Hence, particle damage Dw can be defined as

Dw = Wf

Ws
= A

A0
. (9)

By definition, Dw varies from 0 to 1.
Figure 5 displays particle damage Dw as a function of

impact velocity v, for different values of fracture energy Gc.
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FIG. 5. Particle damage Dw vs impact velocity v for different
values of fracture energy Gc. For each test, the error bar represents
standard deviation over five independent tests.

The damage first increases rapidly with v and then slowly
tends to a constant value. The maximum value of damage is
below 1, meaning that despite huge initial kinetic energy, the
cell-cell interfaces do not break entirely apart. As we shall
see, since the number of primary cells is sufficiently high,
elongated fragments composed of several cell-cell interfaces
are generated. Examples of particle fragmentation are shown
in Fig. 6 for several values of fracture energy Gc with impact
velocity v = 4.5 m/s. Obviously, the damage of a particle
with smaller values of Gc is higher at the same impact velocity
v and increases faster than those of larger Gc. We also see
that the error bars are small, indicating that the variability of
fracture as a result of the variations of impact position is not
significant.

In the comminution process, the amount of energy con-
sumed for fracture as a function of impact energy is an
important aspect that must be thoroughly considered. We de-
fine fracture efficiency η as the ratio of the total energy Wf

consumed for fracture to the impact energy,

η = Wf

W −
k

. (10)

FIG. 6. Fragmentation of a particle impacting a rigid wall for
different values of fracture energy Gc. The simulation was carried
out with an impact velocity of 4.5 m/s.

η

v

Gc = 0.2 2

Gc = 0.5 2
Gc = 1.0 2

Gc = 2.0 2

FIG. 7. Fracture efficiency η vs impact velocity v for different
values of fracture energy Gc.

Comminution is generally not an efficient process in the sense
that most of the supplied energy is not consumed in fracture.
It is thus interesting to see how the value of η for a single
particle depends on the impact parameters.

The evolution of η as a function of impact velocity v

for different values of Gc is shown in Fig. 7. We see that
fracture efficiency first decreases to a minimum value of the
order of 0.05 and then increases rapidly with v up to a peak
value of the order of 0.2. After the peak, it slowly declines
towards a nonzero asymptotic value depending on Gc. The
velocity at which η takes its peak value increases with Gc.
The variation of η in our study is consistent with previous
studies [42], except for the initial decrease of η at low impact
velocity v. This decrease as a function of impact velocity
reflects energy loss by inelastic interactions and the opening
of cracks inside the particle in the vicinity of the impact point.
Since cracked interfaces are governed by frictional contact
interactions, the loss of energy at the increasing number of
such contacts grows with velocity and leads to a lower amount
of energy available for fracture. Note, also, that the velocity
at which η reaches its minimum value increases with Gc.
The nonmonotonic behavior of the evolution of η means that
there is a characteristic velocity at which the conversion of the
kinetic energy to fracture is optimal. As we shall see, below
and above the characteristic velocity, the supplied energy is
essentially either dissipated by inelastic collisions or taken
away by the fragments.

During fragmentation, the kinetic energy of the parent
particle can be dissipated by viscous damping between the
particle and the rigid plane, plastic deformation, and damage
of the particle or transferred to the generated fragments. We
define an effective restitution coefficient ek from the ratio of
the pre-impact and post-impact kinetic energies,

e2
k = W +

k

W −
k

. (11)

The evolution of e2
k as a function of impact velocity is shown

in Fig. 8. Consistently with the initial decrease of η, the
squared restitution coefficient e2

k decreases from a value close
to 1 since the restitution coefficient between primary cells is
close to 1. From a value of v at which fracture efficiency η

reaches its minimum, e2
k starts rapidly declining to a minimal

value that decreases with increasing fracture energy Gc, and
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e2 k

v

Gc = 0.2 2

Gc = 0.5 2

Gc = 1.0 2

Gc = 2.0 2

FIG. 8. Squared restitution coefficient e2
k as a function of impact

velocity v for different values of fracture energy Gc.

then increases again. The restitution coefficient at high impact
velocity is larger for lower values of Gc.

IV. SCALING BEHAVIOR

The results presented so far show that the evolutions of
fracture variables Dw, η, and e2

k as a function of v differ
according to the value of the fracture energy Gc. This is
an expected behavior since the amount of fracture created
by impact energy W −

k is directly dependent on the surface
energy. We define a normalized impact energy ω by the ratio
of supplied energy W −

k to the total interface energy Ws of the
particle,

ω = W −
k

Ws
. (12)

We naturally expect that the simulation data collapse when
expressed as a function of ω. Following Ref. [60], we refer to
ω as damage potential.

Figure 9 displays the evolution of e2
k as a function of ω on

the log-log scale. We see that all data points fall into three
distinct regimes with two well-defined crossover values ω0

and ω1. The data nearly collapse on a master curve in the
first two regimes, but differ slightly in the third regime. In
the range ω < ω0 � 0.3, e2

k decreases slowly with ω. In this
regime, the particle is not broken and only a small fraction of

0.1

1

ω0 ω10.01 0.1 1 10 100

e2 k

ω

Gc = 0.2 2

Gc = 0.5 2

Gc = 1.0 2

Gc = 2.0 2

(a)

(b)

(c)

FIG. 9. Squared restitution coefficient e2
k as a function of nor-

malized impact energy ω on a log-log scale for different values of
fracture energy Gc. The dotted lines are the fitting forms of Eqs. (13)
and (14). The vertical dashed lines mark transition points between
different regimes.
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FIG. 10. Particle damage Dw as a function of the normalized
impact energy ω on a log-log scale. The dotted lines are the fitting
forms shown in Eqs. (15) and (16). The vertical dashed lines indicate
transition points between different regimes.

the supplied energy is used to create cracks at the impact point.
The decrease of e2

k can be attributed to the fact that the normal
restitution coefficient between the particle and the rigid plane
is close to zero and the restitution coefficient between cells
is not strictly equal to 1. It is, however, remarkable that ek is
above 0.9 in this range.

In the range of intermediate values, ω0 < ω < ω1 � 2.0,
the restitution coefficient declines rapidly with increasing ω

due to the creation of an increasing number of cracks inside
the particle. Finally, in the range ω1 < ω, the particle breaks
into an increasing number of fragments and the restitution
coefficient increases slowly with ω. It is noteworthy that the
first two regimes of Fig. 9 were not observed in the simu-
lations of Ref. [42] due to the low value of the restitution
coefficient in those simulations. But the crossover to particle
fragmentation occurs at the same value ω1 � 2.0 as in our
simulations, despite differences in the numerical methods that
are employed.

Figure 9 also shows that the whole range of the first two
regimes ω < ω1 is well fit to a double power-law function,

e2
k = 1

a
(

ω
ω0

)m + b
(

ω
ω0

)n , (13)

with prefactors a = 0.058 and b = 1.165, and exponents m =
1.9 and n = 0.024. The data do not exactly collapse as a
function of ω in the second and third regimes. Higher values
of Gc lead to lower values of ek at ω1. The values of the
parameters for the above fitting form slightly depend on Gc.
We used the highest value of Gc to obtain their values. It is
also remarkable that in the third regime, the data seem to tend
to an asymptotic power-law function as ω increases,

e2
k = c

(
ω

ω1

)k

, (14)

where c = 0.3 and k = 0.11.
Figure 10 shows particle damage Dw as a function of ω.

Here, all the data nicely collapse on a single increasing func-
tion of ω. In the low-energy regime, Dw increases from 10−3

to 10−2. In the second regime, it increases faster, from 10−2 to
0.2. In the third regime, it increases from 0.2 towards 1. For
the first two regimes, the following fitting function captures
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FIG. 11. Fracture efficiency η as a function of normalized im-
pact energy ω. The dotted lines are the fitting forms (17) and (18).
The vertical dashed lines indicate transition points between different
regimes.

the data well:

Dw = a′(ω/ω0)

1 + b′(ω/ω0)
, (15)

with a′ = 0.022 and b′ = −0.175. In the high-energy regime,
the following form is well suited to the data:

Dw = c′(ω/ω1)

1 + d ′(ω/ω1)
, (16)

where c′ = d ′ = 0.403, ensuring that as ω → ∞, Dw tends
to 1.

According to Eqs (9) and (10), we have η = Dw/ω. We
may therefore express η as a function of ω from that of Dw.
Hence, for the low- and intermediate-energy regimes, we have

η = a′/ω0

1 + b′(ω/ω0)
. (17)

For the high-energy regime, we have

η = c′/ω1

1 + d ′(ω/ω1)
. (18)

The evolution of fracture efficiency η as a function of ω

together with these fitting forms are displayed in Fig. 11. In
the first regime, η decreases slightly from 0.1. However, in the
second regime where part of the supplied energy contributes
to crack nucleation, η increases with ω before reaching the
peak value around ω = ω1. We see that the fitting form (17)
does not exactly capture the initial decrease of η, but it follows
the data points within the available statistical precision. The
third regime is excellently captured by the proposed fit. In this
regime, η declines although particle damage Dw increases.
This means that the amount of energy contributing to particle
breakage increases, but it requires an excess energy supply
which increases faster, thereby leading to a fast reduction
of η.

It is important to note that the choice of the numerical
values of ω0 and ω1 was based on the observation of the
generation of cracks and particle fragmentation. Indeed, for
ω > ω0, cracks begin to form inside the particle, and for
ω > ω1, the particle breaks into at least two fragments. These
transition points have nearly the same value for the five in-
dependent tests performed for each set of parameters. We
also have seen that they are consistent with the evolution of

1

10

ω0 ω10.01 0.1 1 10 100

χ

ω

Gc = 0.2 2

Gc = 0.5 2

Gc = 1.0 2

Gc = 2.0 2

FIG. 12. Fragmentation efficiency η as a function of the normal-
ized impact energy ω. The dotted lines are the fitting forms (21)
and (22). The vertical dashed lines indicate transition points between
different regimes.

restitution coefficient, fracture efficiency, and damage as a
function of damage potential ω.

Another variable of interest is the ratio χ of the post-impact
kinetic energy to the fracture energy,

χ = W +
k

Wf
. (19)

This variable quantifies the relative weight of the energy
transported by the fragments with respect to that consumed
in particle breakage. It can be expressed as a function of ek

and η,

χ = e2
k

η
. (20)

Given the fitting forms of ek and η as a function of ω, the evo-
lution of χ in the first and second regimes must be captured
by the following fitting form:

χ = ω0 + b′ω
a′a

(
ω
ω0

)m + a′b
(

ω
ω0

)n , (21)

and for the third regime by

χ = c

c′ (ω1 + d ′ω)

(
ω

ω1

)k

. (22)

The evolution of χ as a function of ω on the log-log scale
is shown in Fig. 12 for different values of Gc. The fitting
form is close to the data points in the first two regimes within
statistical precision, but does not capture the trend in the first
regime well, while in the third regime, it follows the data
points well. The value of χ increases from 10 to 18 in the
first regime, implying that the kinetic energy of fragments is
high compared to the energy consumed for fracture, which
should be vanishingly small in the absence of crack gener-
ation. Then, it decreases in the second regime at which the
energy consumed for crack generation increases faster than
kinetic energy. It reaches its minimum value coinciding with
the peak of η, as shown in Fig. 11. At this point, we have
χ � 1, which means that the amount of energy consumed at
this point for fracture is nearly equal to that carried away by
the fragments. In the third regime, χ increases again due to
the faster increase of the kinetic energy of fragments than the
energy consumed by breakage.
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FIG. 13. Normalized energy dissipated by inelastic collisions
and friction Wc/Ws vs normalized impact energy ω for ω > ω1.

It is also interesting to consider the energy Wc dissipated
by inelastic collisions and friction,

Wc = W −
k − W +

k − Wf . (23)

We normalize this energy by the total surface energy Ws and
the following expression can be easily established:

Wc

Ws
= ω

(
1 − η − e2

k

)
. (24)

The evolution of this ratio as a function of ω is displayed
in Fig. 13 for ω > ω1, where particle breakage occurs. It
increases almost linearly with ω with slope � 1/2 up to very
high values of ω. This implies that approximately half of the
supplied kinetic energy is dissipated by contact inelasticity
and friction when the particle breaks. The remaining half is
either used for fracture or carried away by the fragments.

V. FRAGMENT SIZES AND SHAPES

The shapes and sizes of the fragments reflect the frag-
mentation process. Several experimental studies have shown
that the fragments of rock generated by explosion or impact
have an elongated shape and the probability distribution of
the fragment masses is a power-law function [9,25,26,32].
To define an appropriate shape descriptor, we construct the
bounding box of each fragment with principal axis c � b � a,
as shown in Fig. 14. The length a of the bounding box is the
longest dimension of the fragment, b is the largest distance
perpendicular to the direction of a, and c is defined as the

FIG. 14. The space dimensions of a fragment according to its
bounding box in three mutually orthogonal planes (a � b � c).
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FIG. 15. The average shape descriptors as a function of normal-
ized impact energy ω for all values of fracture energy Gc, with (a) the
flatness ratio 〈c/b〉 and (b) the elongation ratio 〈b/a〉.

largest distance perpendicular to the plane determined by a
and b. The shapes of the fragments can be described in terms
of the elongation ratio b/a and flatness ratio c/b. The inverse
values a/b and b/c represent the two aspect ratios.

We consider the average value of the elongation ratio and
flatness ratio calculated over all fragments generated as a
result of particle breakage. We neglect the fragments com-
posed of a single primary cell in order to remove the effect of
Voronoi tessellation. The values of 〈c/b〉 and 〈b/a〉 are shown
in Fig. 15 as a function of ω for ω > ω1. The minimum values
of elongation ratio 〈b/a〉 and flatness ratio 〈c/b〉 are � 0.69
and � 0.77, respectively. The ratio c/b increases and tends
to a constant value � 0.88, while b/a slightly decreases and
remains constant and equal to 0.69.

Interestingly, these values are comparable to the data ob-
tained from particle size and shape distributions in lunar sam-
ples [25,26,61]. Since only limited amounts of lunar soil were
retrieved during the Apollo missions, the particle shapes were
studied using micro-x-ray computed tomography of simulant
granular materials manufactured based on real lunar samples
[26]. Disregarding very fine particles, the distributions of the
grain shapes were found to have an average flatness ratio
0.694 ± 0.143 and an average elongation ratio 0.723 ± 0.132,
which are quite close to their values of the fragments in our
simulations. It has been argued that this ratio represents a
self-similar shape: once broken into two equal fragments, each
fragment has the same elongation ratio as the parent particle
[26]. Mathematically, the ratio of self-similar shape by this
operation is

√
2/2 � 0.7. In our simulations, the particle does

not break in successive steps, but the average value of the
elongation ratio suggests that a self-similar crack propagation
process occurs inside the particle during its breakage.

Another quantity that has been used for the characteriza-
tion of particle shape is the shape factor S f defined as [9]

S f = (1/a + 1/b + 1/c)
√

a2 + b2 + c2/
√

3. (25)
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FIG. 16. Probability distribution of the shape factor Sf on a
semilogarithmic plot for all values of fracture energy Gc and impact
velocity v.

This parameter reaches its lowest value S f = 3 for nearly
spherical fragments with a � b � c, while elongated shapes
have larger values, S f > 3. To quantify the statistics of oc-
currence of different shapes of fragments, we determined the
probability distribution p(S f ) of the shape factor. Note that
we gather data of fragment shapes for different impact ve-
locities v together to gain large enough data sets to calculate
the distribution function. Figure 16 shows that the simulation
data for all values of Gc collapse on a curve which has a de-
creasing exponential form for S f > 3.2. This is in remarkable
agreement with the experimental results of Ref. [9], although
the fragments in our simulations result from single-particle
fracture rather than a multiparticle granular process. The mean
value of S f is about 3.3 for all cases in our simulations.

We also investigated the probability distribution p(m) of
fragment masses. Several previous studies suggest that the
distribution is generically a power-law function,

p(m) ∼ m−τ . (26)

It seems that the value of the exponent τ is not universal, but
depends on the material or the amount of energy consumed
for fragmentation [7,9,29,62–64]. Figure 17 presents the frag-
ment mass distributions p(m) for different values of fracture
energy Gc on the log-log scale. The masses of fragments m
are normalized by the maximum mass mmax. We observe here
a power-law behavior for all values of Gc. The value of the

FIG. 17. Fragment mass distributions p(m) for different values
of the fracture energy Gc. The solid line shows the power function
(26) with τ = 3.0 for Gc = 0.2 J/m2 and the dotted line with τ =
2.1 for Gc = 2.0 J/m2.

exponent at Gc = 0.2 J/m2 is τ = 3.0, but decreases as Gc

increases. For Gc = 2.0 J/m2, we find τ = 2.1. The value of
τ in our study is higher than the value τ = 5/3 proposed for
three-dimensional solids [9,29,32,65]. It is important to recall
here again that particle size distribution resulting from the
comminution of a granular material is a consequence of the
combined effects of stress distribution inside the material and
single-particle fragmentation process. For this reason, the size
and shape distributions of single-particle impact may differ
from those of a granular process involving multicontact stress
transmission.

VI. CONCLUSIONS

In this paper, a fracture law based on the Griffith criterion
was used with the bonded cell method implemented in a 3D
DEM code for the simulation of the fracture behavior of a
single particle impacting a rigid plane. The particle is dis-
cretized by means of Voronoi tessellation into polyhedral cells
whose interfaces represent potential cracks while the cells and
their combinations represent potential fragments. The frac-
ture law implies that a cell-cell interface fails if the energy
release rate is above the fracture energy. Our results of single-
particle fracture compare well with both past simulations of
the same process and recent experimental data.

Our simulations show that the behavior of the impacting
particle involves three distinct regimes depending on the dam-
age potential ω, defined as the ratio of impact energy to the
fracture energy of the particle. Our results are consistent with
previous experimental and numerical findings, in which our
first two regimes correspond to a damaged state and the high-
energy regime is coincident with the fragmented state. This
behavior makes two critical values of the damage potential
appear, which determine whether the particle breaks or simply
rebounds with or without being damaged. For different values
of fracture energy, we showed that several physical variables
such as particle damage, restitution coefficient, fracture ef-
ficiency, and the amount of energy dissipated by inelastic
collisions and friction are well scaled by ω. The fracture
efficiency is a nonmonotonic function of impact energy with
its optimal value at the crossover to the third regime, where
particles break into several pieces. We found that in the third
regime, nearly half of the input energy is dissipated by contact
inelasticity and friction, the other half being either consumed
for fracture or carried away by the fragments generated as a
result of particle breakage.

We also found that the distribution of fragment masses is a
power-law function with an exponent slightly decreasing with
fracture energy. It is remarkable that the shape descriptors of
the fragments such as flatness ratio and elongation ratio have
generic values previously observed in real samples of granular
materials. In particular, we found that the fragments in the
whole range of values of ω have an average aspect ratio which
is nearly equal to

√
2, a value that hints at a self-similar shape.

This self-similarity is consistent with the existence of a power-
law size distribution, which is a consequence of the absence
of characteristic lengths (between cell size and initial particle
size) in the system.

It will be important to extend this work to a broader para-
metric study to assess the generality of the scaling behavior
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evidenced in this work. For example, the initial particle used
in our simulations is undamaged and its total surface energy
Ws is constant. It will be interesting to consider damaged
particles (containing precracks) to study the effect of varying
Ws on the dependence of the restitution coefficient and damage
on ω. Furthermore, the restitution coefficient between cells
can be set to lower values to study its effect on the two first
regimes and the crossover values of ω. In the same way, it is
important to consider the effect of the restitution coefficient at
the impact point between the particle and the bottom walls on
the effective restitution ek coefficient of the particle.

Longer term, we would like to use our results to predict the
fracture of particles in rotating drums and during quasistatic
deformation of granular materials. Extensive simulations will

be performed in both configurations for the scaling of particle
breakage as a function of system parameters to obtain clues
for the scale-up of comminution from the particle scale to a
collection of particles.
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