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Abstract

We use capillary condensation simulated by a multiphase Lattice Boltzmann model as a means to generate homoge-
neous distributions of liquid clusters in 2D granular media. Liquid droplets condense from the vapor phase between
and on the grains, and they transform into capillary bonds and liquid clusters as thermodynamic equilibrium is ap-
proached. As the amount of condensed liquid is increased, liquid clusters of increasing connectivity are formed and
the distribution of liquid undergoes topological transitions until the whole pore space is filled by the liquid. We inves-
tigate the cluster statistics and local grain environments. From extensive simulations, we also obtain the mean Laplace
pressure as a function of the amount of liquid, which is found to be quite similar to the well-known experimental re-
tention curve in soil mechanics. The tensile stress carried by the grains is determined as a function of the amount of
condensed liquid. A peak stress occurs beyond the pendular state for a saturation degree equal to 0.4 before falling
off as a result of the pressure drop inside the merging clusters.
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1. Introduction

In soil mechanics and powder technology, granular
materials are often filled by a wetting or binding liq-
uid that plays a key role in their rheological proper-
ties. For example, the triggering of landslides and sed-
iment transport involve the rheology of dense mixtures
of grains and water [1]. The slope stability by vegeta-
tion is also governed by the hydro-mechanical proper-
ties of the root-soil matrix [2]. Another example is the
so-called vadoze zone (above the phreatic zone) where
water is retained by adhesion and capillary action with-
out being necessarily saturated. The properties of this
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zone are essential for agriculture and pollution trans-
port. In the same way, the hydro-textural evolution of
wetted granular materials is an important problem in in-
dustrial processes such as wet mixing and agglomera-
tion of ores and powders [3].

An outstanding effect of liquid is the bulk cohesion
induced by surface tension in a partially wetted granu-
lar material. The stability of a sand castle, for example,
is ensured by small amounts of water distributed in the
form of menisci that hold the grains together at their
contact points [4]. The shear strength increases rapidly
in this pendular state until all contacts between neigh-
boring grains are wetted. Beyond this point, the cohe-
sive strength of the material remains nearly independent
of the amount of liquid. Further increase of liquid vol-
ume leads, however, to liquid clustering and increasing
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number of grains fully immersed in the liquid phase.
Little is known about the distribution of liquid in this
funicular state and the dependence of cohesion on the
amount of liquid [5].

Recent experiments show that the pore-filling process
in transition to the funicular state is a rich and interest-
ing physics problem involving an intricate texturing of
liquid clusters [6]. The intermediate states in the funic-
ular state and transition to a fully saturated state have
been characterized only through experimental retention
curves and the authors are aware of no experimental
studies of shear strength and liquid distribution in late
funicular states at the scale of the disordered granular
structure [7].

In this paper, we are interested in the statistics of liq-
uid clusters in 2D granular packings as a function of an
increasing amount of liquid distributed homogeneously
inside the packing. We use a single-component multi-
phase Lattice Boltzmann model together with a classi-
cal phase diagram in order to condense the liquid from a
vapor phase injected numerically inside a periodic gran-
ular packing of disks. Unlike mechanical mixing, this
method leads to a homogeneous distribution of liquid
bridges between grains at thermodynamic equilibrium
so that meaningful statistics can be obtained even with a
low number of grains. By slowly increasing the amount
of vapor, we obtain different clustering states: the pen-
dular state at low liquid content, the funicular state in
the intermediate range of liquid content and the bubble
state at high liquid content. We investigate in detail the
statistics of liquid clusters and the mean Laplace pres-
sure as a function of the amount of liquid.

In the following, we first describe the modeling ap-
proach and simulated system. Then, we present a de-
tailed analysis of the liquid clusters and their connection
with the evolution of Laplace pressure as a function of
the amount of liquid. We conclude with a short discus-
sion and scopes of this work.

2. Numerical method

Partially saturated states in a granular material in-
volve three phases: solid grains, liquid and gaz. Hence,
a numerical or theoretical model requires three ingredi-
ents: 1) granular dynamics, 2) Navier-Stokes equations
for the liquid, and 3) thermodynamics of gas-liquid
phase transition (including surface tension). The fluid is
simulated by means of the Lattice Boltzmann Method
(LBM), which consists in discretizing the Boltzmann
equation in the phase space and time using a finite differ-
ence scheme. In this work, we use the two-dimensional

Figure 1: Lattice Boltzmann discretization of space and D2Q9 model.

D2Q9 model with nine discrete velocities on a square
grid of spacing ∆x (Fig. 1).

In this model, discrete velocities are defined along
8 possible directions of motion from a node to its 8
surrounding neighbors. By denoting c = ∆x/∆t and
cs = c

√
3

the propagation speed on the lattice, we set
~e1 = (c, 0), ~e2 = (0, c), ~e3 = (−c, 0), ~e4 = (0,−c) for
the rectilinear directions, and ~e5 = (c, c), ~e6 = (−c, c),
~e7 = (−c,−c), ~e6 = (c,−c) for the diagonals directions
and ~e0 = (0, 0) in order to account for particles that stay
in place at a node. The fluid flow is governed by the
evolution equation:

fa
(
~xa, t + ∆t

)
= fa(~x, t) + Ωa + ∆ fa (1)

where the main variables fa are the fluid particle distri-
bution functions along different directions a, and ~xa =

~x +~ea∆t denotes the nodes surrounding ~x. The collision
operator is based on the BGK approximation [8]:

Ωa =
∆t
τ

(
fa(~x, t) − f̄a(~x, t)

)
(2)

with a single relaxation time τ. This collision term to-
gether with discretized Lattice-Boltzmann equation (1)
leads to Navier-Stokes equations [9].

The fluid viscosity is computed through the relation
ν = cs∆t(τ − 1

2 ) [10]. The equilibrium densities along
lattice directions are given by the Maxwell distribution

f̄a(~x, t) = waρ

[
1 +

1
c2

s
~ea ·̄~u +

1
2c4

s
~ea ·̄~u2 −

1
2c2

s
~̄u2

]
(3)

where the weight factor wa is 4/9 for a = 0, 1/9 for a =

1 . . . 4 and 1/36 for a = 5 . . . 8. For the computation,
we use dimensionless Lattice Units (lu) with ∆t = 1,
∆x = 1 and τ = 1. The body forces are applied through
the relation

∆ fa = f̄a(ρ,~u + ∆~u) − f̄a(ρ,~u) (4)

with ∆~u = ~F∆t/ρ. The equilibrium velocity can be ob-
tained from

ρ̄~u =

8∑
a=0

fa~ea + ~F∆t/2 (5)
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where ρ is the mass density at a node ρ =
∑8

a=0 fa.
One major advantage of LBM is its ability to account

for multiphase flows [11, 12, 13]. The interactions be-
tween liquid, gas and solid (grains) are derived using
nonlocal potentials. These potentials are calculated on
a regular mesh between the fluid particles and neigh-
boring lattice nodes that control the surface tension and
contact angle between fluid and solid [14]. Long-range
inter-particle potentials to model multiphase flows were
initially introduced by Shan and Chen [15, 16] through
a so-called effective mass ψ reflecting the momentum
change due to cohesion forces. In the early models of
phase separation the function ψ was simply assumed to
be an increasing function of density [17]. Recently, dif-
ferent methods have been proposed through a thermody-
namically founded equation of state [18, 14, 19]. Most
of these methods use the approximation

ψ(~x) =

√
−2(p(~x) − c2

sρ(~x))/c2
s (6)

obtained through the Chapman-Enskog expansion,
where p is the pressure at the node ~x [20].

In this paper, we consider the following expression
of the body force (in which we account both for fluid
internal cohesion and fluid-solid adhesion):

~F(~x) = ψ(ρ(~x))
∑8

a=0 wa[ψ(ρ(~x))(1 − s(~xa))
+ψ(ρ fs(~x))s(~xa)]~ea (7)

where s is an indicator function, equal to 1 if the node is
solid and 0 otherwise, and ρ fs(~x) is used to modify the
contact angle at the fluid-solid interface by choosing a
value between the gas and liquid densities at the solid
nodes [21].

The thermodynamics of phase change is based on
Carnahan-Starling’s equation of state [19], which is an
improvement of the classical van der Waals equation;
see Fig. 2. It can be written using the variables p, ρ
and T , which are normalized here by their values at the
critical point:

p = cρT
1 + bρ + (bρ)2 − (bρ)3

(1 − bρ)
− aρ2 (8)

where a = 3.8525, b = 0.1304 and c = 2.7859
are fixe parameters obtained by solving the system of

3 equations:
{

p = 1 ; ∂p
∂ρ

∣∣∣∣
T̃

= 0 ; ∂2 p
∂2ρ

∣∣∣∣
T

= 0
}

at critical
point (ρ = 1; T = 1) [19]. It is worth noting that in
this model all free parameters are fixed by setting the
values of the critical point.
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Figure 2: Isotherm (dotted line), coexistence and spinodal curves ac-
cording to Carnahan-Starling’s equation of state. The pressures and
densities are normalized by those of the triple point.

Figure 3: From left to right: condensation and coalescence of liquid
drops at constant volume.

3. System description

For the LBM computation we set the critical values
to Pc = 0.00442 lu, Tc = 0.0943 lu and ρc = 0.13044 lu
[20]. Capillary condensation is triggered by setting the
temperature to T = 0.7Tc (see Fig. 2), and a uniform
fluid density equal or greater than the minimum spin-
odal density ρ?v . Practically, for simulations we use a
fully periodic domain to which we add small fluctua-
tions in the density field to initiate the coalescence pro-
cess; Fig. 3. By varying the amount of liquid, it is pos-
sible to get drops or bubbles of different sizes and to de-
termine the liquid-vapor surface tension γ`v ' 0.014 lu
from the Laplace equation, as shown in Fig. 4.

In the simulations reported below, the wetting con-
tact angle is set to zero. Physically, this is equivalent to
setting γsv = γ`v, where γsv is the solid-vapor surface
tension.

For a saturation degree S ' 0.2 Figure 12a, b and c
respectively display the computed scalar fields of fluid
density ρ, potential psi and pressure p into the granular
material.

The fluid density ρ at the interface between bulk liq-
uid and bulk gas varies fast but smoothly over a few
lattice steps. Figure ?? shows the evolution of ρ across
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(a) (b) (c)

Figure 5: Colors maps of: a) the fluid density ρ, b) the potential ψ and the pressure p.
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Figure 4: Pressure drop across the liquid-gas interface as a function
of the radii of 8 simulated drops and bubbles.

a liquid-vapor interface.
The granular samples are prepared by isotropic com-

paction of 1000 disks with a friction coefficient µ = 0.1
simulated by the molecular dynamics method inside a
biperiodic cell [22]. The grains have a uniform size dis-
tribution by volume fractions with a ratio 3 between the
largest and smallest grains. The resulting static config-
uration has a packing fraction 0.82 and a coordination
number 5.6. The space is meshed by a rectilinear grid
of 2 250 000 nodes, corresponding to at least 30 nodes
within a small grain diameter. Furthermore, since in 2D
the pores are closed, we added a thin permeable layer
around each grain to allow for fluid transfer in the pore
space. This is important for fast relaxation of thermo-
dynamic variables to equilibrium although the vapor is
introduced randomly in all pores. Note that all calcula-
tions are conducted by assuming that the grains remains
immobile. In practice, this implies that the confining
pressure is high compared to capillary stress so that the
condition of force balance on each grain is satisfied as
normal and tangential forces evolve.
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Figure 6: Evolution of fluid density across the liquid-gas interface as
a function of distance r in LBM units.

The evolution of liquid clusters and internal stresses
or pressures are monitored as a function of the satura-
tion degree S , defined as the volume Vliquid of condensed
liquid normalized by the total pore volume Vpores, us-
ing a floodfill algorithm. This classical digital image
processing algorithm allows one to determine the area
connected to each seed node.

The following algorithm is a simple recursive imple-
mentation of the floodfill (without boundary conditions)
in which we assume that pixel is and an object embed-
ding 3 variables x,y and color.

function Flood_Fill(pixel,targetColor,newColor)
if pixel.color == targetColor do

pixel.color := newColor

Flood_Fill(pixel.x++,targetColor,newColor)
Flood_Fill(pixel.x--,targetColor,newColor)
Flood_Fill(pixel.y++,targetColor,newColor)
Flood_Fill(pixel.y--,targetColor,newColor)

end if
end Floof_Fill
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By using the contact points between grains as the ini-
tial seeds, we determine all independent clusters in the
system for all values of S . The criterion used in the
floodfill algorithm considers that two fluid pixels are
connected if they are in contact. This means that two
liquid bridges belong to a single cluster if they are con-
nected by at least a single liquid pixel. Using this proce-
dure it is possible to determine the volume of the clus-
ters or the “wet” connectivity of each grain, i.e. the
number of independent liquid clusters connected to a
grain (Fig. 7).

Figure 7: Color map of the connectivity of clusters (positive values)
and grains (negative values).

In all simulations reported in this paper, the grains
are fixed, implying that the capillary forces resulting
from liquid-gas surface tension acting at the triple points
on the grains and Laplace pressure acting at the liquid-
grain interface are fully balanced by the contact forces
exerted by the neighboring grains of each grain.

The natural physical units of the system are the grain
size d, liquid density ρ` and liquid-vapor surface tension
γ`v. Hence, in the following we normalize the lengths by
d, the forces by γ`v and the stresses by γ`v/d. Note that
in 2D the surface tension is understood as “line tension”
with the dimension of a force.

Animation videos of the simulations can be found
at the following address: www.cgp-gateway.org/
Video/Wet_Packing.

4. Liquid clustering

Figure 8 displays three snapshots of liquid clusters
with increasing degree of saturation S . Snapshot (a)
corresponds to the pendular state where the liquid is dis-
tributed in the form of binary bridges between grains.

Figure 8: Snapshots of liquid clusters with increasing amount of liq-
uid. From left to right, S = 0.1, S = 0.3 and S = 0.7.

Snapshot (b) represents a typical example of the early
stages of the funicular state where liquid clusters are
connected to two or more grains whereas snapshot
(c) represents the latest stages of the funicular regime
where a large number of grains are immersed in the liq-
uid phase. Snapshot (d) corresponds to a high amount
of liquid where the liquid clusters percolate throughout
the packing and the mixture can be more appropriately
described in terms of the distribution of grains and bub-
bles in a liquid.

The clustering state may be characterized by the pro-
portion Cm of liquid clusters connected to m grains. In
the same way, the grain environments can be described
from the proportion Pn of grains connected to n inde-
pendent liquid clusters. We will refer to m as the “order”
of a cluster. The average state of liquid connectivity is
given by the average clustering order 〈m〉 =

∑mmax
m=2 mCm

and the “wet” coordination number is 〈n〉 =
∑nmax

n=1 nPn.
Figure 9 shows the evolution of 〈m〉 and 〈n〉 as a function
of the amount of liquid S . In the pendular state, we have
〈m〉 = 2. As the amount of liquid increases, liquid clus-
ters of increasing order are formed by the coalescence
of clusters of lower order. As a result, 〈m〉 begins to in-
crease slowly from 2 at S ≥ 0.15 and diverges around
S = 0.6. As we shall see below, this point corresponds
to the percolation transition of the liquid phase.

The wet coordination number 〈n〉 increases in the
pendular state from zero to a maximum (' 3.5 at S '
0.15) corresponding to the largest number of binary liq-
uid bridges. Then, it declines down to 〈n〉 ' 1 at
S ' 0.8, which corresponds to a state where most grains
are either immersed in liquid or in contact with the per-
colating liquid cluster and a binary bridge; see Fig. 8(d).

A percolation transition occurs in the liquid phase at
S ' 0.6 as seen in Fig. 11 where the volume of the
largest cluster Vmax normalized by the total pore vol-
ume Vpores is plotted as a function of S . Note that the
process of the coalescence of primary liquid clusters be-
gins well before with an increasing number of immersed
grains. After transition, the liquid phase forms a single
cluster and we have Vmax/Vpores ' S . The percolation
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Figure 9: Evolution of the average clustering order 〈m〉 and wet coor-
dination number 〈n〉 as a function of the amount of liquid.
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Figure 10: The amount of liquid S versus Laplace pressure difference
δp = pv − p`, where pv is the mean vapor pressure and p` is the mean
liquid (negative) pressure. The pressures are normalized by γ`v/d.
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Figure 11: Evolution of the normalized volume Vmax/Vpores of the
largest liquid cluster as a function of the amount of liquid S .

transition reveals the highly nonlinear character of the
pore-wetting process although the distribution is homo-
geneous in the bulk. This feature is a reflection of granu-
lar disorder. The fact that the transition occurs far below
full saturation (S = 1) means that the liquid can exist as
a continuous phase without filling the pores.

The macroscopic states of water in soils are generally
classified by considering the relationship between water
content S , and the Laplace pressure difference (or suc-
tion) δp = pv − p`, where pv is the mean vapor pressure
and p` is the mean liquid (negative) pressure. This re-
tention curve is used to characterize different types of
soil (depending on the grain size and shape distribu-
tions), but it has a generic form that is quite well repro-
duced by our simulations, as shown in Fig. 10. The two
ranges S < 0.15 and S > 0.9 can be distinguished from
the intermediate regime where S increases rapidly as δp
declines with practically no signature of the percolation
transition evidenced for the largest liquid cluster in Fig.
11.

The largest values of δp occur at the very early stages
of the pendular state with small values of the radius of
curvature of the capillary bridges. In our simulations,
as a result of the permeable layer introduced at the con-
tact points allowing for fluid transfer between pores in
2D, the largest value (in absolute value) of δp reflects
the minimal gap between grains. Up to S ' 0.15, the
Laplace pressure declines almost linearly as S increases
as a result of the increase of the radius curvature of the
capillary bridges.
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Figure 12: a Rho, b Psi, c Pressure

5. Cohesive strength

In contrast, the cohesive strength σ− of the packing
is sensitive to this transition, as shown in Fig. 13, as a
function of S . The cohesive strength is the mean ten-
sile stress due to the capillary action of the liquid on
the grains. It was calculated from the forces exerted by
the liquid on each grain and using the micromechanical
definition of the stress tensor [23]. Figure 13 shows that
the cohesive strength (in absolute value) increases be-
yond the pendular state, though at a lower rate, up to a
maximum (slightly above the strength at the end of the
pendular state) at S ' 0.4 before falling off again as re-
sult of the pressure drop inside the liquid clusters. We
find that the peak value of σ− and the saturation 0.4 at
which it occurs have no signature on the evolution of the
microstrucure but they rather result from a competition
between the monotonic decrease of liquid pressure and
increase of grain-liquid interface [? ]. This process co-
incides with an increasing number of immersed grains
and a decreasing number of triple points. In this way,
the peak cohesion divides the funicular regime into two
different regimes with ascending cohesion in the early
funicular regime and descending cohesion in the late fu-
nicular regime.

6. Conclusion

In this paper, LBM simulations of homogeneous cap-
illary condensation were used to create homogeneous
distributions of a liquid in the form of capillary bridges
and clusters. We introduced the numerical method and
analyzed the clustering of liquid and the evolution of
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Figure 13: Evolution of cohesive strength σ− as a function of liquid
content S .

Laplace pressure as a function of the amount of liquid
in a 2D granular packing. The coalescence of binary
bridges begins for a degree of saturation S ' 0.15 where
the mean order 〈m〉 of liquid clusters begins to increase
whereas the volume of the largest cluster remains nearly
constant up to S ' 0.6. This shows that the funicular
state in this range may simply be seen as a juxtaposition
of hardly touching binary bridges, in agreement with the
experiments of Scheel et al. [6]. The largest cluster be-
gins to grow after this primary phase of coalescence and
the liquid clusters percolate throughout the system. In
this late funicular state, an increasing number of grains
are immersed in the liquid and the vapor phase is in the
form of bubbles connected to two or more grains.

The Laplace pressure declines during saturation as a
function of S with a shape very similar to measured re-
tention curves in soil mechanics. The evolution of the
connectivity of liquid clusters evidenced by simulations
in this work for all degrees of saturation (from binary
bridges to full saturation of pores) indicates that four
states should be distinguished in the description of un-
saturated soils: 1) pendular state, corresponding to bi-
nary liquid bridges, 2) primary funicular state, where
the capillary bridges join one another without efficient
filling the volume, 3) secondary funicular state, where
the liquid volume percolates and many particles are
fully immersed, 4) bubble state, characterized by bub-
bles connected to two or more grains. This work will be
pursued in order to evaluate the evolution of the internal
cohesion of the fluid-grain mixture, which determines
its cohesive strength. In particular, a pending issue is
whether the cohesive strength increases within the fu-
nicular range as the amount of liquid increases and at
what level of saturation its peak value occurs.
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