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Abstract. We analyze stress transmission in wet granular media in the pendular state by means of three-
dimensional molecular-dynamics simulations. We show that the tensile action of capillary bonds induces a
self-stressed particle network organized in two percolating “phases” of positive and negative particle pres-
sures. Various statistical descriptors of the microstructure and bond force network are used to characterize
this partition. Two basic properties emerge: 1) the highest particle pressure is located in the bulk of each
phase; 2) the lowest pressure level occurs at the interface between the two phases, involving also the largest
connectivity of the particles via tensile and compressive bonds. When a confining pressure is applied, the
number of tensile bonds falls off and the negative phase breaks into aggregates and isolated sites.

PACS. 45.70.-n Granular systems – 83.80.Fg Granular solids

1 Introduction

The particle scale origins of the strength and flow prop-
erties of dry granular materials has been a subject of in-
tensive research since several decades. It is now generally
admitted that the scale-up of particle interactions to the
macroscopic scale is more subtle than initially expected
because of mediation by a disordered microstructure with
a rich statistical behavior [1,2]. Considerable work has
thus been devoted to characterize the microstructure and
its manifestations in the form of highly inhomogeneous
distributions of interparticle forces and fluctuating parti-
cle velocities [3–13]. The bimodal character of the force
network [14], exponential probability functions of strong
forces (force chains) [15,16,8,17], and clustering of dissipa-
tive contacts are recent examples of this non-trivial phe-
nomenology [18]. Insightful analogies have also emerged
with other fields such as jamming transition in colloidal
matter [19–22], slow relaxation in glassy materials [23],
and fluid turbulence [12].

Most of our present knowledge on the subject excludes,
however, cohesive bonding between particles. Although
one expects strong similarities due to the common granu-
lar microstructure, the presence of cohesion brings about
new mechanisms that tend to transform the nature of
the problem. At the macroscopic scale, the shear strength
needs to be described in terms of the Coulomb cohesion in
addition to the internal angle friction [24]. On the other
hand, the interplay between cohesive bonds, friction and
rotation frustration of the particles leads to novel features
such as particle aggregation that control static and dy-
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namic properties of the material [25,26]. A well-known
example is the wet sand where small amounts of water
affect significantly the bulk behavior [27–29]. The phe-
nomena arising from cohesion are of particular interest to
the processing (compaction, granulation, . . .) of fine pow-
ders [30,31]. It seems thus that a systematic investigation
of the microstructure in cohesive granular media should
open new scopes for modeling granular materials.

In this paper, we analyze the force network in wet
granular assemblies of spherical particles. We are inter-
ested in a basic question: how do cohesive grains keep
together to form a self-sustained structure in the absence
of confinement (no container and no confining stresses)?
The packing can reach an equilibrium state as a result of
attraction forces and elastic repulsion between particles
without or with self-stressed structures. While the parti-
cles are balanced in both cases, the attraction force at each
contact is exactly balanced by an elastic repulsion force in
the first case. In contrast, in the second case all contacts
are not in their equilibrium state due to steric hinderance
between particles. Hence, a network of tensile and com-
pressive forces is formed inside the packing. These self-
equilibrated forces can be induced through various loading
histories such as consolidation [32,33] or differential par-
ticle swelling [34]. In wet granular media in the pendular
state, the self-stresses appear naturally due to the tensile
action of capillary bonds bridging the gaps between neigh-
boring particles within a debonding distance. We focus in
this paper on the structure of these self-stresses induced
by capillary bonds.

We use the 3D molecular-dynamics method in which
capillary attraction between spherical particles is imple-
mented as a force law expressing the capillary force as
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a function of the distance, water volume, and particle
diameters. The total water volume is distributed homo-
geneously between particles. The packing is analyzed at
equilibrium under zero confining pressure. The main goal
of our analysis is to characterize the organization of parti-
cle pressures which take positive or negative values accord-
ing to their positions in the network of self-equilibrated
bond forces. We will see that this organization involves a
genuine partition of the particles in two phases of negative
and positive pressures. In the following, we first describe
the simulation method and our model of capillary cohe-
sion. In Sections 3 and 4, we study in detail the probabil-
ity density functions of the forces and the connectivity of
particles via tensile and compressive bonds. Then, in Sec-
tions 5 and 6 we introduce particle stresses and we analyze
their distribution and correlation with the connectivity of
the particles. Section 7 is devoted to the influence of ex-
ternal pressure. We conclude with a discussion about the
main findings of this work.

2 Numerical method

We used the molecular-dynamics (MD) method with a ve-
locity Verlet integration scheme [35,36]. The force laws in-
volve normal repulsion, capillary cohesion, Coulomb fric-
tion, and normal damping. The normal force has three
different sources,

fn = fe
n + fd

n + fc
n. (1)

The first term is the repulsive contact force depending
linearly on the normal distance δn between the particles
(Fig. 1(a)):

fe
n =

{
−knδn, for δn < 0,

0, for δn ≥ 0,
(2)

where kn is the normal stiffness. The second term repre-
sents a viscous damping force depending on the normal
velocity δ̇n:

fd
n =

{
2αn

√
mkn δ̇n, for δn < 0,

0, for δn ≥ 0,
(3)

where m = mimj/(mi + mj) is the reduced mass of the
particles i and j, αn is a damping rate varying in the range
[0, 1[ and that accounts for the rate of normal dissipation
or the restitution coefficient between particles [37].

The last term in equation (1) is the capillary force de-
pending on the liquid bond parameters, namely the gap
δn, the liquid bond volume Vb, the liquid surface tension
γs, and the particle-liquid-gas contact angle θ. The cap-
illary force can be obtained by integrating the Laplace-
Young equation [38–41]. However, for molecular-dynamics
simulations, we need an explicit expression of fc

n as a func-
tion of the liquid bond parameters. We propose the follow-
ing simple form:

fc
n =

⎧⎪⎨
⎪⎩
−κ R, for δn < 0,

−κ R e−δn/λ, for 0 ≤ δn ≤ δmax
n ,

0, for δn > δmax
n ,

(4)
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Fig. 1. (a) Geometry of a capillary bridge; (b) capillary force
fc

n as a function of the gap δn between two particles for differ-
ent values of the liquid volume Vb and size ratio r according
to the model proposed in this paper (solid lines), and from di-
rect integration of the Laplace-Young equation (open circles);
(c) scaled plot of the capillary force as a function of gap from
the direct data shown in (b).

where R =
√

RiRj is the geometrical mean of particle
radii, and λ is a length scale to be discussed below. The
prefactor κ is given by [42–44]

κ = 2πγs cos θ, (5)

and δmax
n is the debonding distance given by [45]

δmax
n =

(
1 +

θ

2

)
V

1/3
b . (6)
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The capillary bridge is stable as long as δn < δmax
n . In the

simulations, the bridge is removed as soon as the debond-
ing distance is reached, and the liquid is redistributed
among the contacts belonging to the same particle in pro-
portion to grain sizes [29]. At contact (δn = 0), κR corre-
sponds to the largest attraction force between two parti-
cles. In the simulations presented in this paper, we assume
that particles are perfectly wettable, i.e. θ = 0. This is a
good approximation for water and glass beads.

The length λ governs the exponential falloff of the
capillary force in equation (4). It should depend on the
liquid volume Vb, a mean radius R′, and the ratio r =
max{Ri/Rj ;Rj/Ri}. A reasonable choice is

λ = c h(r)
(

Vb

R′

)1/2

, (7)

where c is a constant prefactor, h is a function depend-
ing on the ratio r, and R′ is the harmonic mean (R′ =
2RiRj/(Ri + Rj)). When introduced in equations (7)
and (4), this form yields a nice fit for the capillary force ob-
tained from direct integration of the Laplace-Young equa-
tion by simply setting h(r) = r−1/2 and c � 0.9. Fig-
ure 1(b) shows the plots of equation (4) for different val-
ues of the liquid volume Vb and size ratio r together with
the corresponding data from direct integration. The fit is
excellent for δn = 0 (at contact) and for small gaps.

Figure 1(c) shows the same plots of the direct data as
in Figure 1(b) but in dimensionless units where the forces
are normalized by κR and the lengths by λ. We see that
the data collapse indeed on the same plot, indicating again
that the force κR and the expression of λ in equation (7)
characterize correctly the behavior of the capillary bridge
for θ = 0. From the same data, we also checked that the
geometric mean R =

√
RiRj introduced in equation (4)

provides a better fit than the harmonic mean 2RiRj/(Ri+
Rj) proposed by Derjaguin for polydisperse particles in
the limit of small gaps [46].

For the friction force ft, we used a viscous-regularized
Coulomb law [37,47,48]

ft = −min
{

γt||δ̇t||, μ(fn − fc
n)

} δ̇t

||δ̇t||
, (8)

where γt is a tangential viscosity parameter, μ is the co-
efficient of friction, and δ̇t is the sliding velocity. In relax-
ation to equilibrium, δ̇t declines but never vanishes due
to residual kinetic energy. The equilibrium state is prac-
tically reached as soon as we have γt||δ̇t|| < μ(fn − fc

n)
at all contacts. This means that the friction force is inside
the Coulomb cone everywhere in the system.

The simulations were performed with a packing com-
posed of N = 8000 spheres with diameters d = 1, 1.5, and
2mm, in equal numbers. The system was subjected to an
isotropic pressure pm via six rigid walls and no gravity in
order to obtain a state as homogeneous as possible. For
the same reason, the friction with the walls was set to zero
although wall effects cannot be fully removed. The param-
eters used in the simulations are displayed in Table 1. The

Table 1. Parameters used in the simulations.

Parameter Symbol Value Unit
Normal stiffness kn 1000 N/m
Damping rate αn 0.8 –
Tangential viscosity γt 1 Ns/m
Capillary force prefactor κ 0.4 N/m
Gravimetric water content 0.007 –
Liquid density 1000 kg · m−3

Particle density 2700 kg · m−3

Friction coefficient μ 0.4 –
Time step 10−6 s
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Fig. 2. Probability density function of normal forces normal-
ized by the largest capillary force f0 for zero confining pressure.

choice of the water volume has no influence on the value
of the largest capillary force in the pendular state. We
also note that the liquid bonds are homogeneously dis-
tributed into all gaps within the debonding distance [49].
With a gravimetric water content of 0.007, the coordina-
tion number is � 6. Experiments show that the distribu-
tion of liquid bonds depends on the preparation protocol
involving the water volume, mixing procedure, and wait-
ing times [50,29].

3 Force distributions

We start out by considering force distributions first in a
system subjected to a negligibly small average compres-
sive stress pm � 0Pa. Figure 2 displays the probability
density function (pdf) of the normal forces both in tensile
(negative) and compressive (positive) ranges. We observe
a distinct peak centered on fn = 0 and two nearly sym-
metrical parts decaying exponentially from the center:

P ∝ e−α|fn|/f0 , (9)

with α � 4 within statistical precision for both negative
and positive forces, and f0 = κRmax, where Rmax is the
largest particle radius. It has been observed that in dry
granular media the distribution is not purely exponen-
tial in the whole range of bond forces [16,8,17,51]. Below
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Fig. 3. (Color online) A map of tensile (green) and compressive
(red) forces in a thin layer cut out in the packing. Line thickness
is proportional to the magnitude of the force.

the average force, the distribution tends to be uniform
or a decreasing power law with a weak exponent [52]. In
the present case of wet cohesive materials, the exponen-
tial behavior extends to the center of the distribution. It
is important to remark that this peak does not represent
non-transmitting contacts. It rather corresponds to con-
tacts where capillary attraction is balanced by elastic re-
pulsion, i.e. knδn + f0 = 0. We will see below that this
peak persists under the action of a compressive confin-
ing stress, suggesting that its presence reflects a feature of
force transmission in wet granular materials.

The tensile range is cut off at fn = −f0 corresponding
to the largest capillary force. Although the confining stress
is zero, positive forces as large as 2f0 can be found in
the system. In contrast to dry granular materials, the pdf
shows a peak at fn = 0 which is the average force in
the present case. In fact, in an unconfined assembly of
dry rigid particles, no self-stresses appear and the forces
vanish at all contacts. In our wet material, the presence of
liquid bonds induces tensile and compressive self-stresses
although the average force is zero.

Figure 3 shows the force network in a narrow slice
nearly three particle diameters thick. The tensile and com-
pressive forces are represented by segments of different
colors joining particle centers. The line thickness is pro-
portional to the force. It is remarkable that tensile and
compressive force chains can be observed although the
slice is quite narrow. The bond coordination number z
(average number of bonds per particle) is � 6.1 including
nearly 2.97 compressive bonds and 3.13 tensile bonds.

4 Connectivity of the bond network

We analyze the connectivity of the particles via capillary
bonds by considering the fraction ρ(k+, k−) of particles
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Fig. 4. Grey level map of the connectivity function ρ(k+, k−).

with exactly k+ compressive bonds and k− tensile bonds.
This function is displayed in Figure 4 as grey level map in
the parameter space (k+, k−) for our system. The map
is symmetric with respect to the line k+ = k−, reflecting
thus the symmetrical roles of compressive and tensile net-
works in the absence of confining stresses. A peak value
of ρ occurs at k+ = k− = 2. Obviously, the condition of
particle equilibrium cannot be fulfilled with k+ ≤ 1 and
k− ≤ 1 and the corresponding levels are zero on the map.
The particles with k+ = 2 and k− = 0 define chains of
compressive bonds, whereas particles with k+ = 0 and
k− = 2 correspond to chains of tensile bonds. But such
“pure” chains are rare. At larger values of k+ and k− the
fractions decline basically due to geometrical hinderance
between particles.

An interesting feature of the connectivity map (Fig. 4)
is the existence of a population of particles involving no
tensile bonds (the row k− = 0) as well as a population
of particles involving no compressive bonds (the column
k+ = 0). Reduced connectivity functions ρ+ and ρ− can
be defined by summing up the function ρ(k+, k−) along
columns and rows, respectively:

ρ+(k+) =
∑
k−

ρ(k+, k−),

ρ−(k−) =
∑
k+

ρ(k+, k−). (10)

The plots of these functions are shown in Figure 5. They
nearly coincide as expected from the symmetry observed
in Figure 4. We have ρ+(0) = ρ−(0) � 0.08, corre-
sponding, respectively, to particles in purely extensional
or compressional local environments. A maximum occurs
at k+ = k− = 2 or 3.

5 Particle stresses

Until now, we focussed on forces and their distributions
with regard to the tensile or compressive nature of the
bonds. For the description of stress transmission in our
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Fig. 5. Reduced connectivity functions at zero confining pres-
sure for tensile and compressive bonds.

system we need, however, to characterize the inhomo-
geneities at the scale of particles representing the smallest
entities for which the equations of motion are resolved
in MD simulations. At this scale, a Cauchy stress in the
sense of continuous media cannot be defined. But, it can
be shown that the so-called internal moment tensor M
has the same properties as the Cauchy stress tensor σ,
and its definition extends mathematically to discrete me-
dia at all scales down to the particle scale [53,54]. For a
particle i subjected to forces f ij from its contact neighbors
j at the contact points rij , the internal moment tensor M i

is given by [53]

M i =
∑
j �=i

f ij ⊗ rij , (11)

where ⊗ designs a tensorial product. The internal moment
tensor is additive and independent of the origin of the
coordinate frame. For a collection of particles in a control
volume V , the total internal moment M is simply the sum
of the particle moments:

M =
∑
i∈V

M i . (12)

This tensor has the dimension of a moment and it be-
comes homogeneous to a stress when divided by the con-
trol volume:

σ =
1
V

∑
i∈V

M i . (13)

At large scales (containing a sufficiently large number of
particles), the volume is well defined and the stress tensor
is equivalent to the internal moment tensor divided by
this volume. However, at the particle scale, while M i is
defined in a unique way, the choice of the volume V is a
matter of convenience. It is reasonable to take into account
the free volume Vi of each particle i, as the sum of the
volume of the particle and part of the surrounding pore
space. On average, we have Vi = (1/6)πd3

i /ν, where di is
the particle diameter and ν denotes the packing fraction.
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Fig. 6. Probability density function of particle pressures nor-
malized by reference pressure p0 (see text) in the unconfined
packing.

With this choice, the particle stress tensor σi takes the
following form:

σi = 6
ν

πd3
i

∑
j �=i

f ij ⊗ rij . (14)

Remark that when summing this form over many particles
in a control volume as in equation (13), each contact ij en-
ters the summation two times, belonging once to particle i
and once to particle j. Since f ij = −f ji, the contribution
of the contact ij to stress is f ij ⊗ (rij − rji), a writing
that involves the center-to-center vector instead of posi-
tion vectors of the contact points if the origin of coordi-
nates for each particle is chosen coincident with the center
of the particle. However, we consider here only the par-
ticle stress, and at this scale, according to equation (14),
only the position vectors of contact points are involved.

Here, we explore the particle pressures (average par-
ticle stresses) pi = (1/3) tr σi. Each particle can take on
positive or negative pressures according to the nature of
the forces exerted by contact neighbors. The pdf of parti-
cle pressures is displayed in Figure 6. The pressures have
been normalized by a reference pressure p0 = f0/〈d〉2.
The distribution is symmetric around and peaked on zero
pressure, and each part is well fit by an exponential form.
Obviously, the exponential shape of particle pressure dis-
tributions reflects statistically that of bond forces. In dry
granular media, since the normal forces are all of the same
sign (compressive) and particle pressure results from the
summation of individual bond forces on a particle, the
probability is expected to vanish as the pressure goes to
zero. In contrast, Figure 6 shows that the exponential
shape of particle pressure distribution extends to the cen-
ter of the pdf. This can be related to the fact that all nor-
mal forces are not of the same sign. On the other hand,
the zero pressure corresponds to a state where a particle
is balanced under the combined action of tensile and com-
pressive forces. Since such particle states are not marginal
here, they might reflect a particular organization of the
stresses in the wet packing (see below).
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Fig. 7. (Color online) The map of partial pressures p(k+, k−).

6 Partition of particle pressures

An interesting observation about the connectivity map
(Fig. 4) was the presence of particles with only tensile
or only compressive bonds. In terms of particle pressures,
these populations carry negative or positive pressures, re-
spectively. However, this information is not rich enough
as it does not specify the pressure levels in these popula-
tions. The question is how the particle pressure is locally
correlated with the particle connectivity. For particle i,
the connectivity is specified by the number k+

i of com-
pressive bonds and the number k−

i of tensile bonds. Let
us now consider the set S(k+, k−) of particles i such that
k+

i = k+ and k−
i = k−. The partial pressure carried by

this set is the sum of particle pressures in this set divided
by the total number of particles:

p(k+, k−) =
1
N

∑
i∈S(k+, k−)

pi . (15)

This is obviously an additive quantity so that the average
stress pm =

∑
(k+, k−) p(k+, k−). The function p(k+, k−)

provides detailed information about the way particle pres-
sures are distributed with respect to the bond network. In
other words, this function describes the relationship be-
tween the pressure sustained by a particle and its first
neighbors with which it is bonded.

Figure 7 shows the map of partial pressures p(k+, k−)
in the parameter space (k+, k−). Interestingly, we observe
a bipolar structure of partial pressures which is antisym-
metric with respect to the line k+ = k− within statis-
tical precision. The pressures are positive in the range
k+ > k− and negative in the range k+ < k−. Hence,
the line k+ = k− defines the transition zone between
the two parts with p(k+, k− = k+) � 0. This line cor-
responds to the largest population of particles according
to the connectivity map (Fig. 4). The pressure extrema
are located at (k+ = 4, k− = 0) for positive pressures and
at (k+ = 0, k− = 4) for negative pressures.

The bipolar structure of the pressure map suggests
that the particles of positive and negative pressures define

Fig. 8. A representation of the packing with particles of neg-
ative (white) and positive (dark) pressures.

two separate phases throughout the system. In this pic-
ture, the population of particles along the line k+ = k−
corresponds to the particles at the interface between the
two phases. This interpretation is backed by Figure 8 dis-
playing the packing where the two phases are represented
in dark and white. The particles of either positive or neg-
ative pressure percolate throughout the system. The two
phases are intimately intermingled with a large interface
between them. The particles at the interface belong to the
line k+ = k− corresponding to a fraction 0.125 of parti-
cles. The morphology of the two phases is approximately
filamentary with variable thickness.

The correlation between the bond connectivity and
particle pressures can alternatively be determined by con-
sidering the average numbers of tensile and compressive
bonds per particle, denoted z− and z+, as a function of the
particle pressure p. In order to evaluate these functions,
we consider the set S(p) of particles i with a pressure pi

in the range [p, p + Δp], where Δp is the pressure incre-
ment. The partial coordination numbers z− and z+ are
defined by

z+(p) =
1

N(p)

∑
i∈S(p)

k+
i ,

z−(p) =
1

N(p)

∑
i∈S(p)

k−
i ,

(16)

where N(p) is the number of particles in the set. These
functions are plotted in Figure 9 in the case pm = 0. The
plot of z−(p) is an approximate mirror image of z+(p) with
respect to p = 0. Three zones can be discerned. For p <
−p0, we have z− � 5 and z+ � 0.5. This zone represents
mainly the particles belonging to the bulk of the negative
phase. For p > p0, we have z− � 0.5 and z+ � 4. The par-
ticles in this zone belong to the bulk of the positive phase.
In the range −p0 < p < p0, z+ increases and z− declines.
The intersection occurs at p = 0 where z− = z+ � 3. This



V. Richefeu et al.: Stress transmission in wet granular materials 7

-3 -2 -1 0 1 2 3
p / p

0

0

1

2

3

4

5

6

7

co
or

di
na

tio
n 

nu
m

be
rs

 z
+

 z
_

 z
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bonds per particle as well as the partial coordination number
(z = z− + z+) as a function of the particle pressure in the
unconfined packing.

zone corresponds to the particles located at the interface
between negative and positive phases.

The above findings underline that stress transmission
in wet granular media is non-trivial. In particular, they
support the partition of the packing into two well-defined
phases both in terms of particle connectivities and in
terms of particle pressures. The peculiarity of this par-
tition is that the extrema of particle pressures are located
in the bulk of each phase (Fig. 4), whereas the maximum
of connectivity between particles via tensile and compres-
sive bonds resides at their interface (Fig. 7). Along this
interface, not only are the bond forces balanced on each
particle, as everywhere in the packing, but the tensile and
compressive bonds contribute equally in such a manner
that the particle pressures are extremely low.

7 Influence of confining pressure

In the absence of a confining stress, the capillary bonds are
at the origin of self-stresses or self-equilibrated forces that
we analyzed in preceding sections. Hence, the observed
symmetry between tensile and compressive bonds is a con-
sequence of static equilibrium at zero confining stress. The
question remains whether the partition of particle pres-
sures, as depicted above, still holds when a wet packing
is subjected to (compressive) confining stress. In practice,
however, we cannot isolate self-equilibrated forces for each
particle from those induced by the external stress (the ac-
tual force network being the sum of the two networks).
This is because the external pressure drives the pack-
ing to a new equilibrium state with modified microstruc-
ture. Hence, the self-stresses for pm = 0, i.e. before rear-
rangements, do not correspond to the rearranged state for
pm 
= 0. While it can be conjectured that the self-stresses
in the presence of a confining pressure will display the
same “bipolar” behavior as for pm = 0, we consider here

-1 0 1 2 3 4
f
n
 / f

0

10
-4

10
-3

10
-2

10
-1

10
0

pd
f

Wet
Dry

Fig. 10. Probability density function of normal forces normal-
ized by the largest capillary force f0 in the confined packing.

the force network and particle pressures without distinc-
tion between induced and self-equilibrated forces.

We applied an isotropic stress pm = 100Pa to the wet
packing prepared with pm = 0. The packing was then al-
lowed to relax to equilibrium under the action of the ap-
plied pressure. This level of confinement is high compared
to the reference pressure p0 (pm/p0 � 0.5), yet not too
high to mask fully the manifestations of capillary cohe-
sion. The same packing was also compressed isotropically
for pm = 100Pa without capillary cohesion (dry packing).

The pdf of normal forces is shown in Figure 10 for
both packings. The symmetry of the distribution around
fn = 0 is now broken (compare to Fig. 2). The distribu-
tions are roughly exponential for both tensile and com-
pressive forces but the exponents are different. We also
note that the exponent for compressive forces is nearly the
same as for the dry sample. On the other hand, although
the strictly zero forces have been removed from the statis-
tics, a distinct peak centered on zero force is present for
the wet sample and absent from the dry sample. If the
occurrence of this peak in the unconfined case (pm = 0)
is attributed to the interfacial zone, its persistence in the
confined case suggests that a negative-pressure phase con-
tinues to coexist with the positive-pressure phase (which
is now the dominant phase assisted with the confining
stress). This point will be analyzed below in relation to
the distribution of particle pressures.

The coordination numbers for compressive and tensile
bonds are 4.85 and 0.85, respectively. This shows that the
application of a confining pressure has transformed a frac-
tion of tensile bonds into compressive bonds. The plots of
the connectivity functions ρ+(k+) and ρ−(k−) are dis-
played in Figure 11. Each function is normalized to unity
as in Figure 5 for the unconfined packing. The function
ρ−(k−) decreases with k− from a peak at k− = 0, show-
ing that nearly half of the particles have no tensile contact
at all. The function ρ+(k+) has a peak at k+ = 4 and only
a small fraction � 0.05 of particles have no compressive
bond (ρ+(k+ = 0) � 0.05).
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Fig. 11. Reduced connectivity functions in the confined pack-
ing for tensile and compressive bonds.

(a) (b)

Fig. 12. (Color online) Two examples of local patterns of ten-
sile (green) and compressive (red) forces surrounding particles
with negative (green) and positive (red) pressures.

Force patterns with one or more tensile bonds corre-
spond to various local configurations where equilibrium of
the particles cannot be ensured only by compressive con-
tacts. Typically, a tensile bond between two particles is
induced by transverse particles that are forced into the
space between the two particles. One example is shown in
Figure 12(a). For this reason, when a packing is subjected
to a stress deviator, most tensile bonds occur along the
direction of extension [29]. The upshot of tensile bonds
when they are located in a purely compressive environ-
ment is thus to reinforce the shear strength. We also ob-
serve many particles with 2, 3 or 4 tensile bonds. One
example is shown in Figure 12(b) where the tensile action
of several particles creates a “cage” of compressive bonds
between their neighboring particles. This kind of patterns
may be locally self-equilibrated and thus form aggregates
that could move as a rigid body when the packing deforms.

The pdf of particle pressures is shown for dry and wet
samples in Figure 13. Large positive pressures decay expo-
nentially in both cases. In the dry case, a local maximum
is observed at p � 1.5 p0 as a signature of the confining
stress. In this range of pressures, we observe a plateau for
the wet sample. In the range of negative pressures, the
distribution is no more exponential. This means that the
organization of tensile forces does not fulfill the conditions
that underlie exponential distribution of strong forces in
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Fig. 13. Probability density function of particle pressures nor-
malized by a reference pressure p0 (see text) in the confined
packing.

Fig. 14. A representation of a thin layer inside the confined
packing with negative (white) and positive (dark) particle pres-
sures.

granular media [15]. In particular, the network of tensile
forces is no more percolating throughout the packing as in
the unconfined case. A map of positive and negative par-
ticle pressures in a thin layer inside the packing is shown
in Figure 14. The positive pressures are dominant and
negative-pressure particles are mostly isolated or appear
in the form of small clusters. Although the negative pres-
sures do not define a bulk phase any more, the peak cen-
tered on zero pressure in Figure 13 can still be considered
as a reminiscence of the interface between the two phases.

This last point appears more clearly in the plots of
partial coordination numbers z− and z+ as a function of
the particle pressure p in Figure 15. We again discern three
zones as in Figure 9 for the unconfined packing. The peak
z+ � 6 appearing around p � 2.5 p0 is the effect of the
confining pressure. At the same time, the level of z− in
the range of negative pressures is reduced to � 3.5 (from
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Fig. 15. Average numbers of tensile (z−) and compressive (z+)
bonds per particle as well as the partial coordination number
(z = z− + z+) as a function of the particle pressure in the
confined packing.

� 5 in the unconfined packing). The intersection occurs
at p = 0 with z− = z+ � 2.

We see that many features of stress transmission in the
unconfined packing persist when a confining stress is ap-
plied. In particular, in both cases, a large class of particles
of weak pressure (close to zero of either sign) is present.
This class was interpreted in the unconfined case as be-
longing to the interface between two percolating phases.
Obviously, this interface is ill-defined for pm = 100Pa
where the negative phase appears in the form of either
isolated particles or very small aggregates. Nevertheless,
our results clearly indicate that tensile bonds and negative
pressures play the same role with respect to the equilib-
rium properties of the particles wherever they are present.

Obviously, as stated before, the molecular-dynamics
method cannot be used as such for the analysis of self-
stresses in the presence of an external pressure. This is
because in molecular dynamics, the resolution of govern-
ing equations proceeds from the knowledge of the posi-
tions of only the first neighbors of each particle and not
from an explicit construction of the system of equations
as in contact dynamics [55,56] An approach for the analy-
sis of self-stresses was presented in Radjäı et al. [57] using
“singular value decomposition” in the framework of the
contact dynamics method. However, a rough estimation
of the self-stresses can be obtained by simply subtracting
the mean pressure pm from the particle pressures. Fig-
ure 16 displays a snapshot of the particle pressures where
the pressures below and above pm are distinguished. The
apparent clustering of particle pressures is quite compa-
rable to that observed in Figure 8. This indicates that it
is very likely that if the self-stresses were isolated from
those induced by the external pressure, they would dis-
play the same nearly symmetric “bipolar” structure as
that observed at zero confining pressure.

Fig. 16. A representation of the packing with particle pres-
sures above (white) and below (dark) the mean pressure pm.

8 Conclusions

We analyzed the statistical properties of the network
of self-equilibrated forces in a wet granular material by
means of 3D molecular-dynamics simulations. Various de-
scriptors of the microstructure and bond force network
were shown to carry the signature of an ingenious orga-
nization of particle pressures in two distinct clusters of,
respectively, positive and negative pressures, each perco-
lating throughout the packing. This partition is not meant
as a formal distinction between negative and positive pres-
sures but rather as related to the way the two popula-
tions share the space and connect to the bond network.
This “phase separation” is characterized by two interest-
ing properties. First, the highest pressures occur in the
heart of each phase, whereas the lowest pressure levels
constitute the interface between the two phases. Secondly,
this interface bears the largest coordination numbers via
tensile and compressive bonds. In the presence of con-
fining stresses, the same phenomenology can be expected
for self-stresses although these cannot be directly accessed
from the force data.

It is important to remark that the homogeneity of self-
stresses in our simulations results from the homogeneous
distribution of capillary bonds. Obviously, the self-stresses
can be more or less localized in different portions of the
material or involve gradients if the liquid bonds are dis-
tributed in a non-uniform manner in the bulk. In the same
way, although the boundary conditions are isotropic, the
self-stresses may be locked in an anisotropic state as a re-
sult of friction and geometrical hinderance effects. In par-
ticular, if the capillary bonds are placed only in the gaps
between particle pairs with privileged orientation, the self-
stresses might organize into an anisotropic scheme. Such
anisotropic distributions of liquid bonds may also appear
as a result of handling the material. The choice of a ho-
mogeneous distribution of liquid bonds in our simulations
was motivated by the requirement of representative statis-
tics for the analysis of the system. However, it would be
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interesting to study the influence of the liquid distribution
on the patterns of self-stresses.

The partition of self-stresses implies that the overall
equilibrium of the packing is ensured by mesoscopic struc-
tures involving length scales larger than the particle size.
These length scales are likely to control the size of aggre-
gates during flow or other packing properties of cohesive
granular materials. On the other hand, the effect of self-
stresses on the tensile strength or Coulomb cohesion of
wet granular materials is of interest to wet processing of
grains in chemical engineering and merits to be studied
along these lines. In the same way, the influence of solid
fraction is an important aspect with evident application
to compaction and consolidation of cohesive packs.

This work was accomplished within the “granular solids”
group of the LMGC. We thank F. Soulié for his help with
the validation of the capillary law used in our simulations.
The data were treated by means of the 3D software mgpost

(www.lmgc.univ-montp2.fr/∼richefeu).
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54. L. Staron, F. Radjäı, J.-P. Vilotte, Eur. Phys. J. E 18, 311
(2005).

55. J.J. Moreau, Eur. J. Mech. A Solids (Suppl.) 13, 93 (1994).
56. M. Jean, Comput. Methods Appl. Mech. Eng. 177, 235

(1999).
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