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A B S T R A C T   

This paper first presents a set of DLVO-based energy-separation functions for a pair of finite uniformly charged 
square platelets of infinitesimal thickness in three elementary configurations: face-to-face, edge-to-edge, and 
edge-to-face. The novel dataset was generated by summing the electrostatic interaction energy computed 
numerically by solving the non-linear 3D Poisson-Boltzmann equation and the van der Waals interaction energy 
calculated analytically. The dataset aims to inform qualitatively and quantitatively the energy/force separation 
functions used in the Discrete Element Method (DEM) and Coarse-Grained Molecular Dynamics (CGMD) 
modelling of clays. The same dataset was then used to calibrate and evaluate two Gay-Berne (GB)-type potentials: 
i) a DLVO-adapted Gay-Berne potential, where the Born-van der Waals branches of the underlying Lennard-Jones 
(LJ) potential are replaced with van der Waals-Columbic branches to represent DLVO interactions; ii) the Mie 
potential, where the exponents of the two energy terms are ‘unlocked’ instead of being set equal to 12 and 6 as 
per the original LJ potential. It is shown that the orientation parameter, µ, and the anisotropy parameter, ν, need 
to be different from µ = 2 and ν = 1 as adopted in CGMD clay modelling to capture the progression of the shape 
of the pair energy-separation function from face-to-face to edge-to-face and edge-to-edge configuration. It is also 
shown that the MIE potential (with exponents m = 3 and n = 1.5) better captures the slow decay of the elec-
trostatic repulsive energy component of the DLVO potential energy Coulombic branch of the interaction potential 
compared to the DLVO-adapted GB potential, which embeds the Lennard-Jones (LJ) exponents m = 12 and n = 6.   

1. Introduction 

Particle-scale clay models are powerful tools to elucidate the me-
chanical processes occurring at the macroscale and inform continuum- 
scale constitutive models. Fully Atomistic Molecular Dynamics 
(FAMD) has been used to model the interaction of a pair of clay particles 
starting from interatomic potentials. However, a FAMD simulation of a 
cluster of clay particles would require computing millions of interactions 
between the digital representation of each atom and molecule in the 
clay-water system. Coarse-Grained Molecular Dynamics (CGMD) models 
are a valuable alternative to reduce the computational cost of the sim-
ulations as they simplify the molecular description of the system by 
reducing the number of degrees of freedom. 

In CGMD simulations, individual atoms coalesce into fewer coarse- 
grained sites. A single clay particle can be modelled with i) a multi- 
site approach, where the coarse-grained sites are ’bonding’ spheres 
(de Bono and McDowell, 2022; Jaradat and Abdelaziz, 2019; Liu et al., 

2015; Pagano et al., 2020; Sjoblom, 2015; Anderson and Lu, 2001) or ii) 
an individual platelet approach, where clay particles are modelled using 
cuboidal, ellipsoidal, or discoidal elements (Bandera et al., 2021; 
Ebrahimi et al., 2016; Kang et al., 2020; Sun et al., 2020; Yao and 
Anandarajah, 2003). 

Particle-scale simulation tools where clay particles are modelled as 
single elements can be highly computationally efficient. However, they 
require the definition of a force-separation or energy-separation func-
tion. Existing approaches to model clay with 3D discrete simulations 
usually employ the Gay-Berne (GB) potential (Gay and Berne, 1981) to 
describe the interaction potential energy between clay particles 
(Plimpton, 1995; Thompson et al., 2022). The GB potential allows for 
simulations of three-dimensional systems of ellipsoids of various aspect 
ratios interacting at different orientations and separation distances and 
is characterised by 4 degrees of freedom. However, the GB model pa-
rameters do not have a clear physical meaning and must be calibrated 
against known interaction energy for a pair of particles (Bandera et al., 
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2021). 
Two main calibration approaches can be found in the literature. 

Ebrahimi et al. (2014) and Honório et al. (2018) fitted the separation- 
energy relationship for oblate ellipsoids in face-to-face and edge-to- 
edge configuration based on FAMD simulations of ’single-layer’ kaolin 
clay particles with aspect ratio 1:5 combined with experimental data 
obtained from Atomistic Force Measurements (AFM). However, this 
approach is limited by the over-simplistic assumptions about particle 
geometry, which is somehow inevitable owing to the high computa-
tional cost of the FAMD simulations. Bandera et al. (2021) fitted the 
energy-separation function based on the DLVO closed-form solution 
derived for infinitely extended-infinitely thick-uniformly charged par-
allel particles (Derjaguin and Landau, 1941; Verwey and Overbeek, 
1948). Yet, the assumption of infinite plates ignores the interaction 
forces arising at the platelet ends, which play a crucial role when clay 
particles are arranged in an edge-to-face configuration. 

The DLVO theory provides a convenient calibration framework, 
embedding the combined effect of pore-fluid temperature, dielectric 
permittivity, and electrolyte concentration. For a rigorous calibration 
based on the DLVO theory, it is essential to conduct a 3D analysis of the 
particle-to-particle interaction considering their finite size and possibly 
including configurations different from elementary ones generally used 
to calibrate the GB potential (face-to-face, edge-to-edge). 

The study presented in this paper aims to develop a DLVO-consistent 
energy interaction function that accounts for the finite size of particles, 
is calibrated against energy-separation functions for elementary con-
figurations, and is validated against a generic particle-pair configura-
tion. The paper first investigates the energy-separation function for 
elementary particle configurations (face-to-face, edge-to-face, edge-to- 
edge) based on the DLVO theory. The energy-separation function is 
derived for rigid, square, uniformly charged and infinitesimally thick 
particles as the sum of the electrostatic Coulombic energy and the van 
der Waals pair energy. The electrostatic component is computed 
numerically by solving the non-linear 3D Poisson-Boltzmann (PB) 
equation with the Finite Element (FE) method using the FE code COM-
SOL Multiphysics ® v. 6.1. The van der Waals component is computed 
analytically by integrating the fundamental molecule-to-molecule 
interaction over two flat plates at any given relative orientation. The 
numerical derivation of the DLVO interaction energy is verified against 
the analytical DLVO formulation for infinitely extended-infinitesimal 
thickness plates and low surface electrical potential/charge. 

The 3D DLVO-based interaction is employed to i) calibrate the GB 
model parameters against elementary configurations and ii) assess the 
performance of the GB model for a generic 3D particle configuration by 
benchmarking the GB simulation against the provided DLVO solution. 
This allows revisiting the current GB formulations and proposing a 
generalised GB formulation (based on Mie potential, Mie (1903)) to 
accurately describe the interaction of finite clay particles at arbitrary 
relative orientation and model the constitutive interaction function. The 
generalised GB model proposed in this paper will be critical to devel-
oping robust Discrete Element Method (DEM) and Coarse-Grained Mo-
lecular Dynamics (CGMD) models. 

2. DLVO theory 

The DLVO theory assumes that the interaction between two charged 
particles in an electrolyte solution depends on the balance of electro-
static Coulombic forces and van der Waals attractive forces acting be-
tween the particles (Derjaguin, 1940; Verwey and Overbeek, 1948). 

Coulombic forces result from the interaction between electric double 
layers (EDLs). When a charged object is immersed in a polar fluid, it 
attracts ions of opposite charge and repels ions of like charge. This re-
sults in an excess of ions of one sign at the particle surface (screening 
phenomenon, Debye and Hückel (1923)). Hence, a single charged clay 
particle in a polar fluid is surrounded by an EDL. The first layer of the 
EDL is formed by the charged ions firmly attached to the particle surface 

(Stern layer). The second layer consists of a non-uniform distribution of 
ions electrically attracted by the particle surface charge and subjected to 
a progressive thermal motion that drives them away from the particle 
itself. As a result, the electrostatic potential decays exponentially with 
the distance from the particle charged surface. 

At particle distances from 10 nm down to interatomic spacing (about 
0.2 nm), weak attractive van der Waals forces originate from the cor-
relations in the fluctuating polarisations of nearby particles (Israel-
achvili, 2011). 

2.1. Electrical double layer 

Within the DLVO framework, the electrostatic energy, UEdl, can be 
computed from the electrical potential field, ϕ(x,y,z) [V], in turn, 
derived from the Poisson-Boltzmann (PB) equation: 

∇2ϕ(x, y, z) =
δ2ϕ
δx2 +

δ2ϕ
δy2 +

δ2ϕ
δz2

= −
c0e
ε

(

exp
(

−
vieϕ(x, y, z)

kT

)

− exp
(

vieϕ(x, y, z)
kT

))

(1)  

where c0 [ion/m3] is the reference concentration taken at a considerable 
distance from the surface, e is the charge of the electron [e = 1.602E− 19 
C], νi is the valence, k is the Boltzmann constant [k = 1.38E− 23 J K− 1], T 
[K] is the absolute temperature, and ε [C2 J− 1 m− 1] is the dielectric 
permittivity equal to the product of the dielectric permittivity in vac-
uum, ε0 [ε0 = 8.8542E− 12 C2 J− 1 m− 1], and the relative dielectric 
permittivity, εr [-]. 

The PB equation is highly non-linear and is solved numerically in this 
work. While there is no controversy about using the PB equation to 
determine the electric potential field distribution around a clay particle, 
deriving the free energy of interacting EDLs is not straightforward. 
Several approaches have been proposed for the electrostatic free energy 
of colloidal systems. Within the framework of classical thermodynamics 
(Verwey and Overbeek, 1948; Derjaguin, 1940), the interaction energy 
is associated with the ’free’ energy. Once computed the electric potential 
distribution, ϕ(x,y,z), one can calculate UEdl knowing that the thermo-
dynamically preferred structure of an EDL is the one that minimises the 
variation of free energy of the system (Gray and Stiles, 2018). However, 
choosing the most appropriate free energy (Gibbs, Helmholtz, Grand 
Potential, or others) is not straightforward. 

According to the recent work by Gupta et al. (2020), when two 
charged plates are immersed in an extensive electrolyte reservoir, it is 
convenient to minimise the Grand Potential Ω [J]. In statistical me-
chanics, the Grand Potential is a quantity used to define the free energy 
of a system defined as Ω ≡ U-TS- μN, where U is the internal energy, T is 
the temperature of the system, S is the entropy, μ is the chemical po-
tential, and N is the number of particles in the system. Assuming Ω0 [J] 
as the Grand Potential of the large reservoir of electrolyte in which the 
considered charged surfaces are immersed, one can compute the varia-
tion of Grand Potential (Gupta et al., 2020) as: 

Ω − Ω0 = −

∫

V

(
ε
2
|∇ϕ|2 + kT

∑

i
(ci − c0)

)

dV +

∫

B

∑

j
qjϕjdB − Ucharge

(2)  

where V [m3] is the system volume, B [m2] represents all the boundaries 
indexed by j, ϕj [V] and qj [C/m2] are the electric potential and the 
charge density respectively at the jth surface, ci [ion/m3] is the con-
centration of the ith ion type, c0 [ion/m3] is the reference ions concen-
tration taken at a considerable distance from the particle surfaces, and 
Ucharge [J] is the energy required to charge the surfaces. Ucharge needs to 
be appropriately modified to account for different boundary conditions. 
By definition, under constant surface charge conditions, no energy is 
required to charge the considered surfaces; thus, Ucharge = 0. In contrast, 
when the boundaries are maintained at constant surface potential, 
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Ucharge ∕= 0, and Gupta et al. (2020) propose: 

Ucharge =

∫

B

∑

j
qjϕjd2rj (3)  

As a result, the variation of grand potential for planar surfaces at con-
stant surface potential can be computed as: 

Ω − Ω0 = −

∫

V

(
ε
2
|∇ϕ|2 + kT

∑

i
(ci − c0)

)

dV (4)  

On the other hand, for planar surfaces at constant charge (Ucharge = 0): 

Ω − Ω0 = −

∫

V

(
ε
2
|∇ϕ|2 + kT

∑

i
(ci − c0)

)

dV +

∫

B

∑

j
qjϕjdB (5)  

The free energy of the interacting electrical double layers, UEdl, is 
calculated by assuming that the free energy is equal to zero when the 
separation distance between the particles goes to infinity: 

UEdl = (Ω − Ω0) − (Ω − Ω0)∞ (6)  

2.2. Van der Waals 

Van der Waals (VdW) forces are attractive intermolecular forces, 
weaker than Coulombic interactions, originating from the correlated 
motion of electrons in adjacent colloidal particles (Mitchell and Soga, 
2005). Casimir and Polder (1948) showed that van der Waals pair- 
potential between two atoms for frequencies corresponding to wave-
length lower than 103 Å = 100 nm = 0.1 µm is proportional to r-6. For r 
> 103 Å, the pair potential is attenuated and proportional to r-7 (retar-
dation effect). For short-range distance, van der Waals interaction en-
ergy between two atoms is given by: 

UvdW,atoms = −
3α2

0hv
4(4πε0)

2
1
r6 = −

C
r6 (7) 

where r is the atomic separation distance, α0 = 4πε0R3 is the elec-
tronic polarizability of a one-electron atom of radius R, ν = 3.3⋅1015 s− 1 

the orbiting frequency of the electron, h is the Planck constant, so that 
hν = 2.2⋅10-18 J is the energy needed to ionise the atom. 

The interaction energies for pairs of different geometrical bodies can 
be derived from Eq. (7). Under the assumption of additive interaction, 
one may integrate the interaction energy of all the atoms in one body 
with all the atoms in the other body. Let us consider two colloidal 
platelets. Assuming that the atoms of the two platelets are distributed 
according to two continuous functions of position ρ1 and ρ2, take two 
atoms i and j belonging to particle 1 and particle 2, respectively, with rij 

their separating distance and uij their pair potential, the total interaction 
potential can be written as: 

UvdW =

∫

V1

∫

V2

ρ1ρ2uij
(
rij
)
dV1dV2 (8) 

where V1 and V2 are the volumes of the two colloidal particles. Eq. 
(8) is written under the assumption that each atom is associated with the 
elementary mass ρ dV. 

According to Hamaker (1937), uij (rij) is negative and, thus, attractive 
as the net force between colloidal particles is always attractive. 

Eq. (8) has been solved for different geometries (Parsegian, 2006) in 
terms of the Hamaker constant: 

AH = π2Cρ1ρ2 (9) 

Here, we consider the example of two finite square parallel platelets 
of negligible thickness (Fig. 1). 

The attractive pair-energy between two squares A and B (Fig. 1) with 
sides of length L separated by a vertical distance z can be computed by 
choosing a point P (x,y,z) on square A and calculating its energy po-
tential with respect to square B. One can then integrate over l and m on 
square A. The distance between the point (x,y,z) on square A and square 
B is r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2 + z2

√
. Therefore, the vdW interaction energy potential 

between the two aligned squares can be computed as: 

UvdW = −
AH

π2

∫ L

0
dm
∫ L− m

− m
dy
∫ L

0
dl
∫ L− l

− l

1
(x2 + y2 + z2)

3 dx ∼
1
z3 (10) 

After integration of Eq. (10), it is found that UvdW roughly decays as 
z-3 and not as much as z-6 as in the case of atom-to-atom interaction. 

The attractive pair interaction energy can be computed for any 
relative orientation between two square plate-like particles. 

3. DLVO interaction for elementary particle configurations 

Based on the numerical/analytical solution of the governing equa-
tions in Section 2, this section presents the energy-separation relation-
ship between two finite clay platelets for three elementary particle 
configurations: face-to-face, edge-to-face, and edge-to-edge. For the sake 
of simplicity, the mathematical formulation of the energy-separation 
function is derived by considering clay particles as rigid, finite, uni-
formly charged square platelets of infinitesimal thickness. The same 
computation could be easily performed with more complex geometries 
(such as hexagonal plate-like particles or prisms) and non-uniformly 
charged particles (it is possible, for instance, to account for positively 
charged particle edges and negatively charged particle surfaces). How-
ever, these analyses are out of the scope of this work. 

The DLVO total interaction energy, Ut, is calculated as the sum of the 
electrostatic potential energy, UEdl, and van der Waals interaction en-
ergy, UvdW. The electrostatic potential energy, UEdl, was numerically 
computed by a FE analysis using the commercial platform COMSOL 
Multiphysics ® v. 6.1. UEdl was calculated for the three elementary 
configurations by imposing either constant surface charge or constant 
surface potential as a model boundary condition on the particle faces. 
The resulting six electrostatic pair-potential energy functions were then 
added to the van der Waals interaction energy that was calculated for 
each particle configuration according to Eq. (10). 

3.1. Electrostatic free energy 

Three different models were built in the FE platform COMSOL to 
compute the pair-wise electrostatic energy of each elementary config-
uration. For each model, two charged plates of finite size were placed in 
the central region of a boxlike domain at a given minimum inter-particle 
distance, h [nm], varying from 0 nm to 600 nm. The platelets were two 
squares of infinitesimal thickness with a dimension of L = 1 µm. Two 
different computations were run for each model: one at constant particle 

Fig. 1. Schematic layout for analytic calculation of van der Waals interaction 
energy at any given relative particle orientation. 
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surface charge and one at constant particle surface potential. For the 
simulations at constant surface charge, the electric charge on the par-
ticle surface was chosen to be uniformly distributed and equal to q = -2 

E-3 C/m2. 
On the other hand, when constant surface potential conditions were 

considered, the value of surface potential, ϕ0, was set equal to 103 mV. 
The boundary conditions to solve the PB equation were as follows: (1) a 
Dirichlet boundary condition (DBC), ϕ = 0, was imposed on all the six 
outer surface boundaries of the box domain; (2) a Dirichlet boundary 
condition, ϕ = ϕ0, was imposed on the platelets surface when modelling 
constant surface potential, whereas a Neumann boundary condition 
(NBC), -n⋅∇ϕ = q/ε, was considered for the constant surface charge 
model, n being the outer normal vector. The electric potential, ϕ, around 
the charged plates in electrolyte solutions practically vanishes 300 nm 
outward from the plate surfaces for constant surface charge and constant 
surface potential. The parameters employed for all analyses are the ones 
listed in Table 1. 

3.1.1. Numerical implementation 
The simulation box size was adapted for each specific case. The 

distance between the particle edge and the outer box boundary was set 
to 100 nm. Preliminary sensitivity analysis showed that this distance is 
sufficiently large not to affect the system’s free energy and, hence, the 
interaction force. The square particles were meshed with quadratic el-
ements, having a side of 20 nm. The volume around the particles is 
meshed with tetrahedral elements, increasing size from the particles to 
the domain’s boundary, with a maximum element growth rate of 1.2. 

3.1.2. Analytical vs numerical for infinitely extended sheet 
Fig. 2 shows the preliminary validation of a 1D FE numerical solution 

against the rigorous solution of the PB equation derived by solving the 
1D PB equation according to Verwey and Overbeek (1948) (via the 
numerical solution of an elliptic integral). The two solutions overlap, 
and the FE analysis was used to derive the electrical potential under 3D 
conditions. 

3.1.3. Elementary configuration: face-to-face 
Fig. 3a shows the boxlike domain used for FE analyses of the face-to- 

face configuration of finite-size particles. Fig. 3b presents the computed 
distribution of electrostatic free energy per unit area for increasing inter- 
particle distance at constant surface charge and potential. Additionally, 
in Fig. 3b, the results were compared with the rigorous solutions for the 
parallel infinite plates of infinitesimal thickness. 

Table 1 
Parameters employed in the FE COMSOL simulations to compute the electro-
static interaction energy.  

Poisson-Boltzmann parameters 

ε0[C2 J− 1 m− 1] 8.8542E-12 
εr[-] 76.7 
k [N m K− 1] 1.38E-23 
e [C] 1.602E-19 
n0 [ion m− 3] 1.2044E22 
ν [-] 1 
T [K] 293  

Fig. 2. Validation of the finite element analysis for face-to-face infinite charged 
particles (1D) against the rigorous analytical solution according to Verwey and 
Overbeek (1948). 

Fig. 3. Finite element analysis for face-to-face particle configuration: (a) schematic diagram of the boxlike analysis domain and (b) potential energy vs minimum 
inter-particle distance at constant surface charge and surface potential. The dashed curves in (b) refer to the rigorous solutions; the continuous lines with markers 
represent the FE results. 
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A minimal difference exists between the two free energy distribu-
tions (finite and infinite plates) in face-to-face configuration (Fig. 3b) for 
both constant surface charge and surface potential. This result is intui-
tive as the plate dimensions of the finite particles are much larger than 
most of the considered inter-particle distances. 

In such conditions, the finite plate behaves as ’infinitely wide’ (the 
electrical field between the two opposing finite-size plates is essentially 
one-dimensional and practically coincides with the electrical field 
developing between infinitely wide plates). However, the effect of the 
particle’s extremities may become non-negligible when inter-particle 
distance is of the same order of magnitude as the particle width. 

3.1.4. Elementary configuration: edge-to-edge 
The same procedure described for the face-to-face configuration was 

followed to compute the energy-separation curve in the edge-to-edge 
configuration (Fig. 4). Once again, the distribution of UEdl calculated 
numerically at constant surface charge and constant surface potential 
was compared with the rigorous solutions for two parallel infinite plates 
of infinitesimal thickness in Fig. 4b. The interaction energy for edge-to- 

edge interaction of finite clay platelets is substantially smaller than the 
case of infinite plates. 

3.1.5. Elementary configuration: edge-to-face 
The same phenomenon can also be observed in Fig. 5 for the edge-to- 

face configuration when the mutual particle inclination is α = 90◦ (T- 
shape interaction). The interaction energy of finite particles in edge-to- 
face configuration is again smaller than the case of clay particles 
modelled as infinite parallel planar sheets of infinitesimal thickness. 

3.2. Van der Waals potential energy 

The solution of Eq. (10) for the van des Waals potential energy for 

Fig. 4. Finite element analysis for edge-to-edge particle configuration: (a) 
schematic diagram of the boxlike analysis domain and (b) potential energy vs 
minimum inter-particle distance at constant surface charge and sur-
face potential. 

Fig. 5. Finite element analysis for edge-to-face particle configuration: (a) 
schematic diagram of the boxlike analysis domain and (b) potential energy vs 
minimum inter-particle distance at constant surface charge and sur-
face potential. 
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parallel aligned squares was computed analytically and is in line with 
the solution presented by De Rocco and Hoover (1960): 

UvdW,FF = −
A
π2

[
Lz2 + 2L3

z4
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L2 + z2

√ arctan

(
L
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L2 + z2

√

)

−
L
z3 arctan

(
L
z

)]

(11)  

Likewise, an analytical solution was also derived for two co-planar 
squares separated by a distance z (edge-to-edge configuration): 

UvdW,EE = −
A
π2

[
1

48z2 +
z

16L2 arctan
(z

L

)
+

L
16z2 arctan

(
L
z

)]

(12)  

The computation of UvdW,EF for edge-to-face configuration is more 

complex as it requires the numerical solution of the integrals in Eq. (10). 
The three van der Waals energy-separation curves are compared in 
Fig. 6. 

3.3. DLVO-based energy-separation curves 

Fig. 7 presents the total energy-separation curves for two interacting 
finite square platelets of side L = 1 µm in face-to-face, edge-to-edge and 
edge-to-face at constant surface charge (q = -2 mC/m2) and constant 
surface potential (ϕ0 = 103 mV), respectively. The total energy curves 
are plotted against the center-to-center distance, r, rather than the 
separation distance, h, for ease of comparison. 

Fig. 6. Analytical calculation of van der Waals pair-energy interaction of two identical finite square platelets in face-to-face, edge-to-edge and edge-to-face 
configuration. 

Fig. 7. Total energy-separation function for two interacting finite square platelets in face-to-face (FF), edge-to-face (EF) and edge-to-edge (EE) configuration at 
constant surface charge (cc) and constant surface potential (cp). 
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3.4. Infinitesimal versus finite particle thickness 

The choice of modelling clay particles with infinitesimal thickness 
was driven by the lack of an analytical solution for the van der Waals 
interaction energy between two cuboidal particles randomly oriented in 
space. The computation of the van der Waals potential energy for a pair 
of cuboidal particles in a generic 3D configuration requires a sixfold 
integration (accounting for 2 particles and the 3 dimensions of the 
particles) of the interaction energy between two atoms (Eq. (7)). 
Considering square particles of infinitesimal thickness reduces the 
number of integrals from 6 to 4 (Eq. (10)), making it accessible for the 
numerical computation of interaction energy for a generic 3D configu-
ration because one dimension of the cuboidal particle (i.e., the thick-
ness) vanishes. 

To confirm the validity of this simplification, the DLVO interaction 
energy for two interacting identical cuboidal particles of square cross- 
section (side L = 1 µm) and thickness t = L/100 = 10 nm was 
compared to the results obtained for square platelets (side L = 1 µm) of 
infinitesimal thickness in FF and EE configuration. This comparison is 
made possible by considering the analytical integration procedure De 

Rocco and Hoover (1960) suggested for cuboidal particles in FF and EE 
configuration. An explicit analytical formulation for two cuboids of 
square cross-section in FF configuration can be found in Casarella et al. 
(2024). 

The DLVO total interaction energy, Ut, was then computed as the 
sum of the van der Waals interaction energy, UvdW, calculated according 
to De Rocco and Hoover (1960), and the electrostatic potential energy, 
UEdl, numerically computed at constant surface charge or constant sur-
face potential via the FE analysis in COMSOL. Fig. 8 shows the boxlike 
half-domain implemented in COMSOL to compute the electrostatic po-
tential energy of cuboidal particles in FF and EE configuration, Fig. 8a 
and Fig. 8b, respectively. 

The comparison between the DLVO total interaction energy when 
considering infinitesimal or finite thickness at constant surface charge 
and constant surface potential is shown in Fig. 9. The plates with 
infinitesimal thickness were designed with either a constant surface 
potential of φ0 = -103 mV (both sides) or a surface charge of − 2 mC/m2 

(− 1 mC/m2 per side). The cuboids were modelled either with a constant 
surface potential of φ0 = − 103 mV on each face or a surface charge of 
− 0.98 mC/m2 on each of the six faces to match the total charge of the 
particles with infinitesimal thickness. The DLVO interaction energy 
curves are plotted against the centre-to-centre distance, r, rather than 
the separation distance, h, for ease of comparison. 

The curves in Fig. 9 are qualitatively and quantitatively very similar 
both at constant surface charge and constant surface potential. This 
result corroborates the choice of modelling the interaction energy by 
considering finite plates with infinitesimal thickness. 

4. Square plate versus oblate ellipsoid 

The energy-separation function has been derived for finite square 
plates of infinitesimal thickness. However, the energy-separation func-
tion for finite square plates will be used in this paper to calibrate and 
evaluate the Gay-Berne potential, which is formulated for ellipsoidal 
particles. 

The EDL interaction energy and force were computed numerically 
for the case of an oblate ellipsoid (a = b and c = a/100, Fig. 10) and 
compared to the interaction energy derived for finite square plates. The 
plate with infinitesimal thickness was designed with a side L = 1 µm =
1000 nm and a surface charge of − 2 mC/m2 (− 1 mC/m2 per side). The 
oblate ellipsoid was designed with a surface charge of − 1 mC/m2 and 
the exact total charge to enable the comparison. The result is an oblate 
ellipsoid with dimensions of the semi-axes a = b = 564 nm and c = 5.64 
nm. The ellipsoid was designed by assigning a constant relative dielec-
tric permittivity to the material forming the particle, and two cases were 
considered, εr = 5 and εr = 80. The first value is typical of solid mate-
rials, while the second corresponds to the relative dielectric permittivity 
of the surrounding medium (aqueous electrolyte solution). 

Fig. 11a compares the finite plate and the oblate ellipsoid in terms of 
electrical double-layer free energy per unit projected area. The two 
curves are qualitatively similar, and there is a slight discrepancy due to 
the different geometry of the interacting elements. It is worth noting that 
the arbitrary assumption about the dielectric permittivity of the material 
forming the oblate ellipsoid does not affect the interaction energy of the 
oblate ellipsoids. Fig. 11b shows the interaction force per unit area, 
where the discrepancy appears negligible. The electrostatic interaction 
pressure for infinite sheets at constant surface charge is also compared 
(psheet = σ2/2ε, where σ[C/m2] is the surface charge and ε[ C2/Jm] is the 
dielectric permittivity of the surrounding medium). As expected, the 
interaction force per unit area tends to be the interaction pressure for 
infinite sheets. 

The results shown in Fig. 11 corroborate the assumption that the 
interaction energy for oblate ellipsoidal particles can be assumed to be 
practically equal to the interaction energy of finite plates with infini-
tesimal thickness. 

Fig. 8. Schematic diagram of the boxlike half-domain built in COMSOL for the 
finite element analysis of the electrostatic energy between two cuboidal 
platelets in (a) face-to-face (FF) and (b) edge-to-edge (EE) configuration. 
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5. Gay-Berne-type potential energy 

5.1. Gay-Berne potential 

The Gay-Berne (GB) energy potential is a 3D modified form of the 
Lennard-Jones (LJ) energy potential (Lennard-Jones, 1931), and it was 
first introduced by Gay and Berne (1981) to evaluate the interaction of 
two rigid, ellipsoidal particles. The LJ energy potential (Fig. 12) has 
been developed to approximate the distance-dependent energy of 
interaction between a pair of spherical atoms/molecules in a fluid, i and 
j, respectively, as a function of the centre-to-centre distance, rij. 

The LJ analytical form is given as follows: 

ULJ
(
rij
)
= 4εLJ

⎡

⎢
⎢
⎢
⎣

(
σLJ

rij

)12

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
Born repulsion

−

(
σLJ

rij

)6

⏟̅̅̅̅⏞⏞̅̅̅̅⏟
vdW attraction

⎤

⎥
⎥
⎥
⎦

(13) 

where εLJ [J] denotes the depth of the attractive well and is related to 
the minimum of the potential energy function and σLJ [nm] is the sep-
aration distance at which the energy ULJ = 0. The total intermolecular 
pair potential comprises an attractive term ~ r-6 and a repulsive term ~ 
r-12 (Eq.(13)). 

In its original formulation, ~r-12 dominates at short distances and 
corresponds to the Born repulsion between the overlapping atom elec-
tron clouds. These repulsive forces are characterised by very short 
ranges and increase sharply as two molecules approach each other. 

The attractive term ~ r-6 represents the van der Waals contribution. 
According to the dispersion interaction energy between two identical 
atoms or molecules (London, 1936), the attractive energy decays as rij

− 6 

in the non-retarded regime (Eq. (13). 
Since the potential decays asymptotically to zero at a considerable 

distance, the energy between particles is usually considered zero when 
the distance between them is more significant than a specific threshold 
value, which is called the cut-off distance and is denoted by rcut. The 
truncation of the potential decreases the computational cost needed to 
perform a simulation by reducing the number of particles that each 
particle interacts with. 

The Gay-Berne (GB) potential (Gay and Berne, 1981) can be seen as 

an anisotropic, 3D and shifted version of the LJ 12–6 interaction suitable 
for uniaxial (elongated) particles, where the LJ parameters, εLJ and σLJ, 
depend on the mutual orientation of the two units and their inter- 
particle vector. 

Gay and Berne (1981) conducted several simulations to determine a 
new potential form specifically for non-spherical units, where the 
interaction energy depends on the minimum distance between these 
units and their relative orientation. They calibrated the pair-wise po-
tential parameters from results obtained by considering face-to-face and 
edge-to-edge ellipsoids modelled as assemblies of spheres interacting 
according to the LJ potential. The resulting potential was further 
assessed for different particle orientations. 

The GB potential presents several valuable numerical features. It can 
be easily differentiated analytically for the positional variables, avoiding 
the discontinuities of purely hard-core models. On the other hand, the 
version of the potential proposed by Gay and Berne (1981) is only 
appropriate for uniaxial (elongated) particles. 

In this work, a generalised GB energy potential is considered for 
describing the interaction between pairs of dissimilar ellipsoidal parti-
cles (biaxial). The generalised GB energy potential is the one imple-
mented in the MD software LAMMPS (Plimpton, 1995; Thompson et al., 
2022), and it is given by the following functional form (Berardi et al., 
1995; Everaers and Ejtehadi, 2003; Brown et al., 2009): 

UGB
(
Ri,Rj, rij

)
= Ur

(
Ri,Rj, rij, γ

)
• ηij

(
Ri,Rj, v

)
• χij

(
Ri,Rj, μ

)
(14)  

where Ri and Rj are the transformation matrices of the ellipsoid I and j 
describing the orientation in space of the two particles with respect to 
the simulation box frame; ηij and χij are dimensionless quantities that 
represent the shape and energy anisotropies induced by the ellipsoidal 
shape of the considered units. Ur controls the site-to-site interaction as a 
function of the shortest distance between the two particles (hij), and it is 
defined as: 

Ur = 4εGB

[(
σGB

hij + γσGB

)12

−

(
σGB

hij + γσGB

)6
]

(15) 

where εGB [J] is the energy scale, σGB [nm] is a length scale, γ [-] is a 
dimensionless parameter that shifts the separation distance associated 

Fig. 9. Comparison between the total energy-separation functions for two interacting finite square platelets and two interacting cuboidal particles of square cross- 
section in face-to-face (FF) and edge-to-edge (EF) configuration at constant surface charge (cc) and constant surface potential (cp). 
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with the potential minimum and accounts for the particle’’ finite radii. 
By definition, the parameter γ is related to the ellipsoid size. However, 
assuming it as a tunable model parameter is standard practice. 

The distance of closest approach between two particles, hij, depends 
on their sizes and orientations and is defined by the following equation: 

hij =
⃒
⃒rij
⃒
⃒ − σGB,ij (16)  

where |rij| [nm] is the centre-to-centre distance between the particles 
and σGB,ij [nm] is defined as per Eq. (17), where the superscript T de-
notes the transpose matrix: 

σGB,ij =

(
1
2
r̄

T

ij
G− 1

ij r̄ij

)1/2

(17)  

with ̄r ij [-] being the normalised distance: 

r̄ij =
rij⃒
⃒rij
⃒
⃒

(18)  

and Gij: 

Gij = RT
i S2

i Ri +RT
j S2

j Rj (19)  

where Si = diag (ai,bi,ci) and Sj = diag (aj,bj,cj) are the diagonal shape 
matrices for particles i and j, respectively, and a, b, and c are the prin-
cipal radii of the ellipsoidal particles. It is convenient to define a scalar 
value s characterising the geometry of the ellipsoid as a function of the 
semi-axis lengths: 

s = (ab + cc)(ab)1/2 (20)  

The quantity ηij depends on the particle’’ dimensions and their relative 

orientation: 

ηij =

(
2sisj

detGij

)υ/2

(21)  

The exponent for the orientation-dependent shape function is ν. This 
parameter has been empirically determined for liquid crystals, and a 
value of 1 was suggested by Berardi et al. (1995). 

Likewise, the energy anisotropy χij is computed using the following 
equation: 

χij =
(

2rT
ij B

− 1
ij rij

)μ
(22)  

where the following equation gives Bij: 

B− 1
ij = RT

i EiRi +RT
j EjRj (23)  

with E = diag(εa, εb, εc) representing the energy matrix of each particle 
and εa, εb and εc the relative well depths, which are defined for three 
elementary configurations: face-to-face, edge-to-edge and side-to-side 
(Fig. 13), respectively. The parameter µ has been empirically deter-
mined for liquid crystals, and a value of 2 was suggested by Berardi et al. 
(1995). 

Fig. 10. Ellipsoid geometry.  

Fig. 11. Comparison of infinitesimal thickness plate (L = 1000 nm) and oblate ellipsoid (a = b = 564 nm, c = a/100): (a) free energy per unit area; (b) force per 
unit area. 

Fig. 12. The typical shape of the Lennard-Jones 12–6 energy potential.  
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The shape and energy anisotropies ηij and χij depend on particle di-
mensions, their relative orientation, and the relative well-depth (εa,i, εb,i, 
εc,i, εa,j, εb,j, εc,j). When the ellipsoidal particles’ radii are equal (a = b =
c), the ellipsoid reduces to a sphere, and the shape anisotropy parameter 
ηij equals 1. If one assumes εa = εb = εc, the energy anisotropy parameter 
χij also becomes equal to 1. With this specific parameter choice and 
considering γ = 1, one obtains the original LJ formulation in Eq. (13). 

The GB implementation described above is convenient as it allows 
simulations of a three-dimensional system containing ellipsoids of 
various aspect ratios interacting at different orientations. The formula-
tion implemented in LAMMPS has been widely used for fully atomistic 
simulations of molecules and complex proteins. In soil mechanics, GB 
pair-wise potential has been employed by Ebrahimi et al. (2014) and 
Bandera et al. (2021) to simulate coarse-grained systems of montmo-
rillonite and kaolinite, respectively. 

5.2. ‘DLVO-adapted’ Gay-Berne energy potential for CGMD modelling of 
clays 

The LJ potential is the most widely used pair potential in Molecular 
Simulations. It is a reasonable choice for predicting atoms’ and small 
molecules’ contact energies and phase behaviour. 

Conceptual discrepancies arise when employing the LJ potential (or 
the anisotropic 3D-version GB potential) in the Coarse-Grained (CG) 
modelling of colloidal particles. When the model elementary unit is one 
clay platelet of submicron length, the particle–particle interactions 
occurring at an atomic distance become negligible, and the relevant 
interaction distance goes from tens to a few hundred nanometers. 
Therefore, the very short-range Born repulsive forces (within a few 
nanometres) can be neglected. On the other hand, the long-range 
Coulombic repulsive forces arising from the particle net surface charge 
must be considered. The net particle interaction should be obtained by 

summing an attractive short-range term (van der Waals attraction) and a 
repulsive long-range term (Coulombic repulsion). Within the CG 
modelling of clay particles, the ~ r-12 term of the LJ potential can now be 
used to model the attractive short-range van der Waals potential, 
whereas ~ r-6 can be used to model the repulsive Coulombic branch 
(Fig. 14). 

This analytically translates in the following modification of Eq. (13): 

UDLVO
(
rij
)
= − 4εDLVO

⎡

⎢
⎢
⎢
⎣

(
σDLVO

rij

)12

⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟
vdW attraction

−

(
σDLVO

rij

)6

⏟̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅ ⏟
Coulombic repulsion

⎤

⎥
⎥
⎥
⎦

(24) 

Fig. 13. Face-to-face, edge-to-edge and side-to-side configurations of flat ellipsoids.  

Fig. 14. Adapted Lennard-Jones energy potential for CGMD modelling of 
clay particles. 

Table 2 
Calibrated parameters for Approach 1.  

(a)‘DLVO-adapted’ GB (m = 12, n = 6) - cc. 

DLVO-adapted parameter Value 

γDLVO [-] 0.84 
εDLVO [J] 6.75E-22 
σDLVO [nm] 135 
εa,DLVO = εb,DLVO [-] 26 
εc,DLVO [-] 850 
ν [-] 1 
µ [-] 2  

(b) MIE (m=3, n=1.5) - cc. 

MIE parameter Value 

γMIE [-] 0.27 
εMIE [J] 6.75E-22 
σMIE [nm] 28 
εa,MIE = εb,MIE [-] 26 
εc,MIE [-] 850 
ν [-] 1 
µ [-] 2  

(c) ‘DLVO-adapted’ GB (m=12, n=6) - cp. 

DLVO-adapted parameter Value 

γDLVO [-] 0.88 
εDLVO [J] 1.68E-21 
σDLVO [nm] 130 
εa,DLVO = εb,DLVO [-] 40 
εc,DLVO [-] 740 
ν [-] 1 
µ [-] 2  

(d) MIE (m=3, n=1.5) - cp. 

MIE parameter Value 

γMIE [-] 0.3 
εMIE [J] 1.68E-21 
σMIE [nm] 24 
εa,MIE = εb,MIE [-] 40 
εc,MIE [-] 740 
ν [-] 1 
µ [-] 2  
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Further to this change, the LJ can be employed to model the forces 
accounted for in the DLVO theory. 

5.3. Generalised Gay-Berne energy potential (Mie potential) for CGMD 
modelling of clays 

The choice of the two exponents 12 and 6 for the repulsive and 
attractive term in the original LJ pair energy potential was historically 
selected to model the molecular Born repulsion and van der Waals 
attraction, respectively. There is no evidence that the LJ 12–6 potentials 
are more efficient than other possible choices to simulate DLVO inter-
action between platy ellipsoidal particles. For example, the analysis of 
the vdW interaction of two parallel finite plates has shown that the vdW 
interaction energy is inversely proportional to the distance to the power 
of 3 (Eq.10) rather than the power of 6 as is the case of the ‘original’ 
Lennard-Jones potential or the power of 12 in the ‘adapted’ Lennard- 
Jones. 

The Mie potential (Mie, 1903), for example, is as mathematically 
convenient as the LJ potential (power-law-based function) but allows for 
an arbitrary choice of the steepness of the decay of both the attractive 
and the repulsive term: 

UMIE
(
rij
)
= − 4εMIE

⎡

⎢
⎢
⎢
⎣

(
σMIE

rij

)m

⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅ ⏟
vdW attraction

−

(
σMIE

rij

)n

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
Coulombic repulsion

⎤

⎥
⎥
⎥
⎦

(25)  

with m and n integers. 

6. Calibration of GB potential against elementary particle 
configuration 

The DLVO-adapted GB interaction energy between two identical 
disk-like particles requires seven parameters: one interaction distance 
parameter, σDLVO [nm], one energy parameter, εDLVO [J], two relative 
well depths, εa,DLVO (=εb,DLVO) and εc,DLVO [-], the shift of the potential 
minimum γDLVO [-], the ‘orientation’ parameter ν (Eq. (21), and the 
anisotropy parameter μ (Eq. (22). 

The MIE interaction energy model requires two additional parame-
ters, m and n (Eq. (25), for a total of 9 parameters. 

It should be noticed that the well depths εa and εb, associated with the 
edge-to-edge interactions in two orthogonal directions, are assumed to 
be equal. As observed at the electron microscope, clay particles are 
approximately equidimensional in the basal plane a-b (Brown et al., 
2009; Pedrotti and Tarantino, 2018), and this leads to a representation 
of the clay particle as an oblate ellipsoidal geometry (Cadene et al., 
2005) with two equal principal radii a and b, in turn, two orders of 

Fig. 15. Approach 1: calibration of the ‘DLVO-adapted’ GB and MIE potentials against the DLVO energy-separation distance relationships for finite square platelets at 
constant surface charge (a), (b) and (c) and constant surface potential (d), (e) and (f) (figures (b) and (e) can be considered as a prediction as they were not used for 
calibration). 
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magnitude larger than the third radius, i.e., the thickness c (disc-like 
platelets). 

The parameters of the DLVO-adapted GB and MIE potentials do not 
have a clear physical meaning, and they need to be calibrated against a 
known pair potential energy field. To this end, the diameter of the oblate 
ellipsoid platelets was set equal to the side of the square plates employed 
for the DLVO energy computation in the previous section. The elemen-
tary units chosen for the computation of the DLVO-adapted and MIE 
potentials were platy rigid ellipsoids, with one semi-axis being two or-
ders of magnitude smaller than the other two (a = b = 500 nm and c = 5 
nm). 

Two approaches were examined to calibrate the parameters of the 
‘DLVO-adapted’ and MIE potentials depending on whether the ‘orien-
tation’ parameter, ν, and the anisotropy parameter, μ, were pre-selected 
based on the literature or were best fitted. 

6.1. Approach 1 - Orientation and anisotropy parameters set to ν =1 and 
μ = 2 

Following Berardi et al. (1995), Ebrahimi et al. (2014) and Bandera 
et al. (2021), the ‘DLVO-adapted’ GB potential and MIE potential were 
calibrated against the separation-energy relationship for two elementary 
interactions only, edge-to-edge and face-to-face, derived according to 
the DLVO framework presented in Section 3. The model parameters, µ 
and ν, were also fixed and assumed equal to 2 and 1, respectively 
(Berardi et al., 1995; Ebrahimi et al., 2014; Bandera et al., 2021). The 

five model parameters for the ‘DLVO-adapted’ GB potential (εDLVO, 
γDLVO, σDLVO, εa,DLVO and εc,DLVO) and the seven model parameters for 
the MIE potential (εMIE, γMIE, σMIE, εa,MIE and εc,MIE, m, and n) were then 
adjusted by fitting Eqs. (24) and (25) against the energy-separation 
curves determined for these two elementary interactions. It should be 
noted that the constraint m/n = 2 was imposed on the MIE potential. 

Table 2 summarises the calibrated parameters for Approach 1 (µ=2 
and ν = 1) for constant surface charge and constant surface potential. 
Fig. 15 presents the calibration of the GB potential using Approach 1. 
Since only face-to-face and edge-to-edge DLVO data were used for 
calibration, the edge-to-face curves (Fig. 15b and Fig. 15e) can be 
viewed as a genuine prediction simulation. ‘DLVO-adapted’ GB and MIE 
potentials simulation of edge-to-face potential appears relatively poor. It 
appears that the MIE potential (m = 3 and n = 1.5) reproduces the decay 
of the electrostatic repulsion better than the ‘DLVO-adapted’ GB po-
tential (m = 12 and n = 6). 

6.2. Approach 2 - Orientation and anisotropy parameters ν and μ by best 
fitting 

Zannoni (2018) explicitly specifies that the parameterisation µ=2 
and ν = 1 proposed by Berardi et al. (1995) favours side-to-side inter-
action, in the sense that the well-depth in edge-to-edge configuration 
turns out to be much higher than the well-depth in edge-to-face 
configuration. However, an opposite trend appears from the three 
DLVO pair-interaction energy curves calculated in Fig. 16, i.e., the 

Fig. 16. Approach 2: calibration of the ‘DLVO-adapted’ GB and MIE potentials against the DLVO energy-separation distance relationships for finite square platelets at 
constant surface charge (a), (b) and (c) and constant surface potential (d), (e) and (f). 
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well-depth in edge-to-face configuration is higher than the well-depth in 
edge-to-edge configuration. Employing the parameterisation proposed 
by Berardi et al. (1995) in a CGMD simulation of clay particles would 
lead to an excessively low energy barrier in edge-to-face configuration 
and generate diffuse edge-to-face contacts at the sample generation 
stage and upon mechanical loading. 

Fundamental macroscopic phenomena observed in clay have been 
explained by looking at the micro-mechanisms occurring at the edge-to- 
face particle interaction, such as the plastic response under mechanical 
compression (Pedrotti and Tarantino, 2018) and plastic contraction 
upon thermal loading (Casarella et al., 2020). Underestimating the en-
ergy barrier at the edge-to-face contact means an improper portrayal of 
the observed macroscopic response of clay and, thus, unrealistic pre-
dictions of clay behaviour under experimentally unexplored paths. 

To prevent this artefact, the parameters μ and ν were ’unlocked’ and 
best-fitted together with the other five parameters for both the ‘DLVO- 
adapted’ GB and the MIE potential (m and n were maintained equal to 3 
and 1.5, respectively, in the MIE potential). In this case, the seven pa-
rameters were fitted against three elementary configurations: face-to- 
face, edge-to-edge, and edge-to-face. Table 3 summarises the parame-
ters calibrated for the ‘DLVO-adapted’ GB and the MIE potentials for 
constant surface charge and constant surface potential. Fig. 16 compares 
the calibrated potentials with the DLVO numerical data. As for approach 

1, it appears that the MIE potential (m = 3 and n = 1.5) reproduces better 
the decay of the electrostatic repulsion compared to the ‘DLVO-adapted’ 
GB potential (m = 12 and n = 6). In this case, the edge-to-face config-
uration is better reproduced. 

7. Evaluation against generic particle configuration 

The ‘DLVO-adapted’ GB and MIE potentials are designed to represent 
the interaction energy for any generic configuration once their param-
eters are calibrated against elementary modes of interaction. To assess 
their performance, the simulations of the ‘DLVO-adapted’ GB and MIE 
potentials based on the parameters calibrated for the case of constant 
charge (Table 2a, Table 2b, Table 3a and Table 3b) were compared to 
DLVO numerical data in Fig. 17. Four generic diverse configurations 
were selected for the validation. Validation case A (Fig. 17a and 
Fig. 17b) consists of a non-parallel face-to-face configuration with a 
relative orientation equal to 45◦ around the y-axis. Moreover, when the 
separation distance h approaches 0, the edges of the two particles come 
into contact. Validation case B (Fig. 17c and Fig. 17d) consists of a ‘skew’ 
edge-to-face configuration with a relative orientation equal to 70◦

around the y-axis and 30◦ around the z-axis. In this case, the particles 
have a point contact at small separation distances. Validation case C 
(Fig. 17e and Fig. 17f) includes two skewed parallel squares with a 
relative orientation equal to 30◦ around the z-axis. The two particles are 
in face-to-face configuration, but the projected areas overlap by only 42 
%. Validation case D (Fig. 17g and Fig. 17h) consists of a ‘skew’ edge-to- 
edge configuration with a relative orientation equal to 10◦ around the y- 
axis and 30◦ around the z-axis. In this case, the projected areas do not 
overlap. 

The ‘DLVO-adapted’ GB and MIE simulation curves agree with the 
DLVO numerical data (Fig. 17b, Fig. 17d, Fig. 17f, and Fig. 17h) for the 
case of µ and ν unlocked (Approach 2). Additionally, it can be seen, for 
example, in Fig. 17d that Approach 2 (both ‘DLVO-adapted’ GB and MIE 
formulations) captures the qualitative decrease in the energy barrier 
when particles move from face-to-face configuration (relative particle 
orientation around the y-axis equal to 0◦) to edge-to-face configuration 
(relative particle orientation around the y-axis equal to 90◦). However, 
in all the validation cases, the ‘DLVO-adapted’ GB and MIE potentials 
overestimate the energy barrier by around 25 % (average on the four 
validation cases presented). 

Despite this discrepancy, the ’prediction’ of the ‘DLVO-adapted’ GB 
and MIE potentials for generic configurations appears to be satisfactory, 
provided the ‘DLVO-adapted’ GB and MIE potentials are calibrated 
based on seven parameters (i.e., including µ and ν as per Approach 2). 
On the contrary, the ’prediction’ of the ‘DLVO-adapted’ GB and MIE 
potentials for the calibration against five parameters (Approach 1, µ=2 
and ν = 1) appears relatively poor. 

8. Conclusions 

This paper has first presented DLVO-based energy-separation curves 
for a pair of finite platy particles in three elementary configurations: 
face-to-face, edge-to-edge, and edge-to-face, respectively. Following the 
DLVO theory, the novel dataset was generated by summing the elec-
trostatic interaction energy, UEdl, and the van der Waals interaction 
energy, UvdW, between two finite uniformly charged square platelets of 
infinitesimal thickness. The electrostatic component was computed 
numerically by solving the non-linear 3D Poisson-Boltzmann equation 
with the Finite Element (FE) method. The short-range van der Waals 
energy was calculated analytically. 

This dataset can inform qualitatively and quantitatively the consti-
tutive energy/force separation functions in DEM and CGMD modelling. 
The advantage of using the DLVO framework is that it embeds the 
combined effect of temperature, dielectric permittivity, and electrolyte 
concentration of the pore fluid. Therefore, it can underpin the modelling 
of clay mechanical behaviour associated with thermal and 

Table 3 
Calibrated parameters for Approach 2.  

(a) ‘DLVO-adapted’ GB (m = 12, n = 6) - cc. 

DLVO-adapted parameter Value 

γDLVO[-] 0.84 
εDLVO [J] 2.82E-20 
σDLVO [nm] 135 
εa,DLVO = εb,DLVO [-] 26 
εc,DLVO [-] 850 
ν [-] 0.05 
µ [-] 4  

(b) MIE (m=3, n=1.5) - cc. 

MIE parameter Value 

γMIE [-] 0.27 
εMIE [J] 2.82E-20 
σMIE [nm] 28 
εa,MIE = εb,MIE [-] 26 
ε c,MIE [-] 850 
ν [-] 0.05 
µ [-] 4  

(c) ‘DLVO-adapted’ GB (m=12, n=6) - cp. 

DLVO-adapted parameter Value 

γDLVO[-] 0.88 
εDLVO [J] 4.38E-20 
σDLVO [nm] 130 
εa,DLVO = εb,DLVO [-] 40 
εc,DLVO [-] 740 
ν [-] 0.175 
µ [-] 7  

(d) MIE (m=3, n=1.5) - cp. 

MIE parameter Value 

γMIE [-] 0.36 
εMIE [J] 4.38E-20 
σMIE [nm] 24 
εa,MIE =εb,MIE [-] 40 
εc,MIE [-] 740 
ν [-] 0.175 
µ [-] 7  
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environmental loading. 
In this study, the Gay-Berne potential, as implemented in the open- 

source MD code LAMMPS, was calibrated and evaluated against the 
DLVO free energy data for the three elementary configurations (face-to- 
face, edge-to-face and edge-to-edge). The Gay-Berne potential may be 
considered a three-dimensional version of the Lenard-Jones potential 
used to characterise the interaction between two atoms/molecules. Two 
versions of the Gay-Berne potential were considered:  

• ‘DLVO -adapted’ Gay-Berne potential where i) the Born repulsion 
branch of the original Lennard-Jones potential is used to represent 
the van der Waals attraction (by changing the sign of this energy 
term) and ii) the van der Waals repulsion branch of the original 
Lennard-Jones potential is used to represent the Columbic repulsion 
(by changing the sign of this energy term);  

• MIE potential where the exponents m and n controlling the variation 
of the two energy terms forming the interaction potential are 

Fig. 17. Evaluation of the ‘DLVO-adapted’ GB and MIE potentials against the DLVO energy-separation distance relationship for finite square platelets at constant 
surface charge in three generic configurations. Validation case A - mutual inclination between the two squares equal to 45◦ around the y-axis: (a) schematic diagram 
of the analysis domain in COMSOL and (b) potential energy vs separation distance. Validation case B - mutual inclination between the two squares equal to 70◦

around the y-axis and 30◦ around the z-axis: (c) schematic diagram of the analysis domain in COMSOL and (d) potential energy vs separation distance. Validation 
case C – skewed face-to-face squares with a mutual inclination of 30◦ around the z-axis: (c) schematic diagram of the analysis domain in COMSOL and (d) potential 
energy vs separation distance. Validation case D – skewed edge-to-edge squares with a mutual inclination of 10◦ around the y-axis and 30◦ around the z-axis: (c) 
schematic diagram of the analysis domain in COMSOL and (d) potential energy vs separation distance. 
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‘unlocked’ (instead of assuming m = 12 and n = 6 as per the original 
Lennard-Jones potential). 

The calibration procedure was performed for DLVO free energy 
curves computed at constant surface charge and constant surface po-
tential. It has been shown that the orientation parameter, µ, and the 
anisotropy parameter, ν, set to µ=2 and ν = 1 as adopted in CGMD clay 
modelling, favour side-to-side interaction and widely underestimate the 
energy required to bring edge-to-face particles in contact as predicted by 
the DLVO theory. On the other hand, µ=7 and ν = 0.175 capture 
adequately the progression of the shape of the pair energy-separation 
function when moving from face-to-face to edge-to-face and edge-to- 
edge configuration. 

It has also been shown that the MIE potential (exponents m = 3 and n 
= 1.5) better captures the slow decay of the electrostatic repulsive en-
ergy component of the DLVO potential energy Coulombic branch of the 
interaction potential compared to the DLVO-adapted GB potential, 

which embeds the Lennard-Jones (LJ) exponents m = 12 and n = 6. 
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