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Abstract
Particle shape variability is a key to understanding the rich behavior of granular materials. Polyhedra are among the most 
common particle shapes due to their ubiquitous origins in nature such as rock fragmentation and mineral crystallisation. 
Because of their faceted shape, polyhedral particles tend to assemble in jammed structures in which face-face and face-edge 
contacts between particles control the packing-level properties. In this paper, we use tri-periodic particle dynamics simula-
tions to derive for the first time a generic analytical expression of the elastic moduli of polyhedral and spherical particle 
packings subjected to triaxial compression as a function of two contact network variables: (1) a “constraint number" that 
accounts for the face-face and edge-face contacts between polyhedra and is reduced to the coordination number in the case 
of spherical particles, and (2) the contact orientation anisotropy induced by compression. This expression accurately predicts 
the simulated evolution of elastic moduli during compression, revealing thereby the origins of the higher elastic moduli of 
polyhedral particle packings. We show that particle shape affects the elastic moduli through its impact on the contact net-
work and the level of nonaffine particle displacements is the same for the simulated shapes. Its nearly constant value during 
compression underlies the constant values of our model parameters. By connecting the elastic moduli to the contact network 
through parameters that depend on particle shape, our model makes it possible to extract both the connectivity and anisotropy 
of granular materials from the knowledge of particle shape and measurements of elastic moduli.

Keywords Granular materials · Particle dynamics method · Polyhedral particles · Elastic moduli · Effective Medium 
Theory · Triaxial compression · Connectivity · Contact orientation anisotropy

1 Introduction

Granular materials have been at the focus of extensive 
research for their rich and complex properties rooted in dis-
sipative particle interactions, disordered microstructure, and 
particle characteristics such as shape and size distribution 
[1–3]. Although hard-sphere packing has often been used 
as a model of granular materials, aspherical particle shape 
is omnipresent in nature and industry. The crucial role of 
realistic particle shape for quantitative prediction of the 
strength and space-filling properties of granular materials 
has been clearly evidenced by recent simulations and experi-
ments [4–18]. For example, packings composed of particles 
slightly deviating from spherical shape are more compact 
than sphere packings whereas larger deviations towards 
more elongated or platy shapes lead to significantly lower 
packing fraction [4, 7, 9].

Among diverse particle shapes, regular and irregular pol-
yhedral particles are quite common due to their ubiquitous 
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origins such as rock fragmentation and mineral crystalli-
sation. Their specific feature is to assemble in structures 
involving face-face and edge-face contacts which, in contrast 
to simple contact points between spheres, provide a finite 
support for the contact force. Particle dynamics simulations 
have shown that such contacts in packings of polyhedral 
particles are less in number but they capture strong force 
chains and carry thereby a much higher average force than 
simple contacts [6, 10]. The microstructure has also been 
analyzed as a function of the number of facets in relation 
to shear strength [10, 11, 15]. However, we are aware of 
no published work on the elastic properties of polyhedral 
particle packings.

Past work on granular elasticity has essentially focussed 
on isotropic sphere packings [19–22]. The bulk and shear 
moduli are proportional to kn∕d , where kn is the normal con-
tact stiffness and d is mean particle diameter. The moduli 
depend also on the number of contacts per unit volume, and 
stiffness ratio kt∕kn , where kt is the tangential contact stiff-
ness [21–25]. It is well known that, because of its failure to 
account for the nonaffine nature of particle displacements in 
granular media, the effective medium theory (EMT) over-
estimates the elastic moduli [26, 27]. The origins of elastic 
moduli in the general case of anisotropic sheared media and 
the effects of particle shape mediated by microstructure and 
nonaffine displacements are therefore widely open issues.

We report in this paper on a detailed investigation of the 
elastic moduli of dodecahedral (12 faces), icosahedral (20 
faces), and spherical particle packings by means of exten-
sive particle dynamics simulations based on the discrete ele-
ment method (DEM) with a proper treatment of the contact 
interactions between polyhedral particles. In particular, each 
face-face interaction is reduced to a set of elastic/frictional 
contacts between the edges composing the two faces. This 
allows the geometrical constraints associated with rigid 
faces to be imposed and the overlaps between the edges are 
used to compute point forces according to a linear dashpot-
spring force law.

Initially isotropic random close packings were prepared 
by isotropic compaction at zero friction, representing the 
unique densest state of each shape. Subjecting then each 
packing to quasi-static triaxial compression with tri-peri-
odic boundary conditions and a non-zero friction coefficient 
between particles, we calculated their five orthotropic elas-
tic moduli at regular strain intervals together with contact 
network variables such as connectivity and contact anisot-
ropy. A key finding is that the elastic moduli can be fully 
expressed as a function of connectivity and anisotropy with 
a functional form that does not explicitly depend on parti-
cle shape, but involves coefficients that depend on particle 
shape. Accurate determination of these coefficients makes 
it therefore possible to nicely predict the evolution of elastic 
moduli with strain. These expressions also reveal how the 

face-face and face-edge contacts enhance the elastic moduli 
compared to sphere packings.

In the following, we first introduce numerical procedures. 
Then, we discuss in Sect. 3 the evolution of sample-level 
variables during triaxial compression. The evolution of elas-
tic moduli will be presented in Sect. 4. In Sect. 5, we con-
sider the evolution of microstructural variables. In Sect. 6, 
we introduce our expression of elastic moduli as a func-
tion of microstructural variables by a detailed comparison 
between the predictions of EMT and our numerical data. 
Finally, we discuss the most salient results of this paper.

2  Numerical procedures

The simulations were carried out by means of an in-house 
code based on DEM [28–30]. The interactions between poly-
hedral particles need a model for face-face and face-edge 
contacts. The vertex-face and edge-edge interactions involve 
a single contact point, which can be treated in the same way 
as the contacts between spherical or smooth convex parti-
cles. Such simple contacts represent a single unilateral con-
straint, which is treated either by a penalty approach, i.e. 
introducing a repulsive force depending on the overlap, or 
by means of Lagrange multipliers as in the Contact Dynam-
ics method [31–33]. In contrast, in the case of a face-face 
interaction, there are three steric constraints that must be 
correctly treated to avoid interpenetration between the two 
particles as a result of their relative normal displacement or 
rotations around the two other axes.

For rigid polyhedral particles with their finite faces 
defined by their contours composed of several edges, a face-
face interaction can be reduced to interactions between edges 
composing the two faces or between a vertex and one of the 
faces [28]. This means that a face-face interaction is reduced 
to a set of contact points, as shown in Fig. 1a. If a penalty 
approach is applied to all contact points, the three constraints 
will be fully satisfied. It is noteworthy that, the number of 
contact points can be large depending on the number of 
edges, but the number of independent constraints is always 
3 due to the rigidity of the particles. Similar considerations 
apply as well to edge-face interactions, which involve two 

Fig. 1  Different types of contacts between two polyhedra: (a) face to 
face, (b) face to edge, (c) vertex to face
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independent steric constraints; see Fig. 1b. We may thus 
refer to the face-face and face-edge interactions as triple and 
double contacts, respectively.

The contact points between polyhedral particles are 
detected by considering separately the sub-elements (verti-
ces, edges and faces). At each contact point, either a linear or 
a nonlinear force law is implemented. As for Hertz contacts, 
the nonlinear interactions arise from the curvature of the 
surface at the contact points (e.g. between two edges mod-
eled as cylinders). However, in this paper we are interested 
in the effects of particle shape and contact network anisot-
ropy, and therefore we used linear contact laws to reduce 
computational cost. The normal force law is defined as fol-
lows [2, 33–35]:

where f̃n = −kn𝛿n − 𝛾𝛿n , kn is normal stiffness, �n is overlap 
(with sign convention that 𝛿n < 0 when two particle over-
lap), 𝛿n is the relative normal velocity, and � is the viscous 
damping coefficient. The tangential force is governed by the 
Coulomb friction law given by

where kt is tangential stiffness, �t is cumulative tangential 
displacement, �̇�t is relative tangential velocity, and �s is the 
interparticle friction coefficient.

3  Triaxial compression

We prepared three samples composed of monodisperse par-
ticles of dodecahedral, icosahedral, and spherical shapes 
enclosed in a 3-periodic cubic cell [36–38]. They had exactly 
the same number of particles (8000), values of parameters, 
and boundary conditions. We first applied an isotropic 
compression with zero friction between particles, leading 
to dense isotropic states corresponding to a random closed 
packing (RCP) of solid fraction Φ ≃ 0.648 for dodecahedral 
particles, Φ ≃ 0.632 for icosahedral particles, and Φ ≃ 0.637 
for spherical particles.

The isotropic samples were sheared by triaxial compres-
sion for four values of friction coefficient �s = 0.1, 0.2, 0.3, 
and 0.4 between particles. The compression was applied 
along the z axis by imposing a constant strain rate �̇�z while 
keeping the same stress p in lateral directions x and y, as 
shown in Fig. 2. The simulation box can expand along these 
directions to accommodate the applied compression. Since 
the material is in an initially dense state, the packing dilates 
and the packing fraction declines towards a stead-state value 
in all simulations. The inertial number I = �̇�zd(𝜌∕p)

1∕2 , 
where � is the particle density and d is the mean particle 

(1)fn =

{
0, f̃n ≤ 0,

f̃n, f̃n > 0,

(2)ft = −min{kt𝛿t, 𝜇sfn}sgn(�̇�t),

diameter, is low enough ( < 10−3 ) to qualify the compres-
sion as quasi-static [33, 39, 40]. By symmetry, the principal 
stresses and strain rates coincide with the three space direc-
tions with �1 and �1 along the z direction, �2 = �3 = p , and 
�2 ≃ �3.

Figure 3 shows the evolution of stress ratio q/p, where 
q = (�1 − �2)∕3 is stress deviator and p = (�1 + �2 + �3)∕3 
is mean stress, as well as the packing fraction Φ as a function 
of shear strain �q = �z − �x for dodecahedral and spherical 
particle packings (the trends being similar for icosahedral 
particles). Due to the initially high value of packing fraction, 
the samples yield only when q/p reaches a threshold where 
plastic deformation can begin as a result of particle rear-
rangements and dilation. Beyond this point, q/p continues 

Fig. 2  A snapshot of the sample of dodecahedral particles in the iso-
tropic state

Fig. 3  Stress ratio q/p (a), and packing fraction Φ (b) versus shear 
strain �q for packings of spherical and dodecahedral particles with 
four values of friction coefficient �s . The dashed and solid lines join 
data points for spheres and dodecahedra, respectively. The symbols 
represent instances where strain probes are applied
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to increase to a peak value before slowly decreasing towards 
a residual plateau at ∼ 60% of shear strain. The peak value 
reflects therefore the initially high packing fraction although 
no shear bands develop in our system due to three-periodic 
boundary conditions. The peak value increases with �s . In 
polyhedra packings the peak stress ratio is higher and the 
effect of friction coefficient is more pronounced as com-
pared to sphere packings. Since the initial packing fraction 
is high, Φ decreases gradually before reaching a nearly con-
stant value. The reduction of Φ increases when �s is larger. 
This effect is more pronounced in the case of polyhedral 
particle packing.

4  Evolution of elastic moduli

Due to axial symmetry, there are 5 independent moduli Cij , 
defined as follows, based on the Voigt notation [41, 42]:

The elements C11 and C22 are the longitudinal moduli, 
C44 and C55 are the shear moduli, and C12 and C23 are the 
off-diagonal moduli. The bulk modulus K is given by 
K = (C11 + 4C12 + 2C22 + 2C23)∕9 . To determine the mod-
uli, we applied two distinct strain probes in two different 
directions.

To compute the elastic moduli, we used the sheared sam-
ples at 16 instances of their evolution and applied a small 
strain increment ��ij to obtain the corresponding stress 
response ��ij , from which the elastic moduli were extracted. 
The sample was allowed to relax to a fully static state before 
the application of the strain probe. The response is elastic 
if there are no particle rearrangements, and, as we shall see 
below, this is the case when 𝛿𝜀ij < 10−5.

To determine all elastic moduli, two distinct strain probes 
in two different directions were applied at a given stage of 
evolution of the system. For the first probe, a small strain 
rate �̇� was imposed along the z direction while a constant 
pressure was applied along the directions x and y. Due to 
axial symmetry, we have �22 ≃ �33 and ��22 = ��33 = 0 . 
Hence, from the general stress–strain relation, we have

(3)

⎡⎢⎢⎢⎢⎢⎢⎣

��11
��22
��33
��23
��31
��12

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 2C44 0 0

0 0 0 0 2C55 0

0 0 0 0 0 2C55

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

��11
��22
��33
��23
��31
��12

⎤⎥⎥⎥⎥⎥⎥⎦

(4)

⎧⎪⎨⎪⎩

C11�11 + 2C12�22 = ��11,

2C55�12 = ��12,

C12�11 + (C22 + C23)�22 = 0.

For the second probe, �̇� was imposed along the y direction 
while keeping a constant pressure along z and x directions. 
Therefore, we have ���

11
= ���

33
= 0 and the stress–strain 

relations are

From the applied stress and strain increments, we use Eqs. 
(4) and (5) to calculate all elastic moduli. Note that there 
are only 5 independent moduli while we have 7 equations. 
The consistency of the values obtained in this way for the 
six moduli was verified by checking the following relation 
imposed by axial symmetry:

In all cases, we find that this relation holds within an error of 
1% in the initially fully elastic regime and up to 10% around 
the stress peak, where the response to the applied strain 
probe may involve a plastic component due to softening and 
unstable particle rearrangements.

It is noteworthy that, since the simulations are based 
on linear contact laws with constant stiffness param-
eters kn and kt , our packings have an inherent stress scale 
E∗ = kn∕d with which all moduli are expected to scale. 
In the rigid-particle limit, the condition p∕E∗ ≪ 1 should 
be satisfied. In our simulations, we have p∕E∗ ≃ 4.10−6 . 
The normalized elastic moduli depend also on the stiffness 
ratio �t = kt∕kn [19, 21, 43]. In this work, we set �t = 0.8 
in all simulations.

Figures 4, 5, and 6 display the evolution of the longitu-
dinal moduli C11 and C22 , off-diagonal moduli C12 and C23 , 
the shear moduli C44 and C55 , and the bulk modulus K for 
packings of spherical and dodecahedral particles together 
with theoretical predictions that will be discussed in 
Sect. 6. The moduli of the polyhedral particle packings at 
each instance of shear are generally above those of spheri-
cal particle packings. They are constant and independent 
of �s at very small shear strains ( < 10−5 ), but they change 
significantly at larger strains when slip events at persistent 
contacts increase in number and intensity; see Fig. 7.

The behavior beyond this elastic limit is rather com-
plex. All moduli first decline to values all the more small 
that the friction coefficient is large. Then, they increase 
again or continue to decrease slightly depending on parti-
cle shape and �s , followed by a slight increase or decrease 
for 𝜀q > 0.1 . Note that the ratio C11∕C22 increases to values 
as large as 4 before decreasing to ∼ 2 , a value previously 
reported for dense granular materials with low coordina-
tion number [23, 44].

(5)

⎧
⎪⎪⎨⎪⎪⎩

C12�
�
11
+ C22�

�
22
+ C23�

�
33

= ���
22
,

2C44�
�
23

= ���
23
,

C11�
�
11
+ C12�

�
22
+ C12�

�
33

= 0,

C12�
�
11
+ C23�

�
22
+ C22�

�
33

= 0.

(6)C22 − C23 = 2C44.
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5  Evolution of microstructure

The evolution of elastic moduli reflects that of the granular 
microstructure encoded in the force-bearing contact net-
work. The lowest-order descriptors of granular microstruc-
ture are the coordination number Z and contact orientation 
anisotropy ac [45, 46]. The latter can be obtained from the 
fabric tensor defined as

where n⃗ is the unit contact normal. By definition, we 
have tr(F) = 1 , and the largest eigenvalue F1 occurs along 
the compression axis. The two other eigenvalues are 
F2 = F3 = (1 − F1)∕2 . We define the contact anisotropy as 
[10, 47, 48]

The fabric tensor can be evaluated from the probability 
distribution P(n⃗) of the unit contact normal n⃗ . In 3D, the 
contact normal n⃗ is parametrized by two angles � ∈ [0;�] 
and � ∈ [0;2�] . The probability density function P(Ω) of 
contact normals provides a detailed statistical information 
about the fabric, where Ω = (�,�) is the solid angle, with 
dΩ = sin �d�d� . The fabric tensor can then be expressed 
as [10, 45, 49, 50]:

(7)Fij = ⟨ninj⟩,

(8)ac = 5(F1 − F2)∕2.

where i and j design the components in a reference frame, 
and Nc is the total number of contacts in the control volume 
V. Under axi-symmetric conditions, the probability density 

(9)Fij = ∫Ω

ninjP(Ω)dΩ =
1

Nc

∑
c∈V

nc
i
nc
j
,

Fig. 4  Normalized longitudinal elastic moduli (a) C
11
∕E∗ and (b) 

C
22
∕E∗ , as a function of shear strain �q for packings of spherical and 

dodecahedral particles with different values of friction coefficient �s . 
The dashed and solid lines are theoretical predictions (Eq. (29)) for 
packings of spheres and dodecahedra, respectively

Fig. 5  Normalized elastic moduli: off-diagonal moduli, (a) and (b), 
and shear moduli, (c) and (d), as a function of shear strain �q for 
packings of spherical and dodecahedral particles with different values 
of friction coefficient �s . The lines are predictions by our proposed 
expression (29)
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function is independent of the azimuth angle � . So, within 
a second-order harmonic approximation, we have

From Eqs. (9) and (10), and given the unit contact normal 
n⃗ = (cos 𝜃, sin 𝜃 cos𝜙, sin 𝜃 sin𝜙) , the eigenvalues of the fab-
ric tensor are given by 

(10)P(Ω) =
1

4�

[
1 + ac(3 cos

2 � − 1)
]
.

While the definitions of Z and ac are straightforward in 
the case of spherical particles, we need to consider the con-
tact types for polyhedral particles, as discussed in Sect. 2. 
We generalize the coordination number by attributing dif-
ferent weights to different contact types. In particular, we 
define here a constraint number Zc by weighing each contact 
type by the number of constraints it represents:

where Ns , Nd , and Nt are the numbers of simple, double, and 
triple contacts, respectively, and Np is the total number of 
particles. The constraint number is reduced to the coordina-
tion number in the case of spherical particles.

A packing of frictionless particles is isostatic so that the 
number of degrees of freedom per particle must be equal 
to the number of constraints per particle Zc∕2 . The number 
of degrees of freedom is 3 per particle in the case of fric-
tionless spheres (the rotations being ineffective), whereas 
polyhedra have 6 degrees of freedom per particle both with 
and without friction. Hence, the constraint number for pack-
ings of spheres and polyhedra is 6 and 12, respectively. We 
find Zc ≃ 6.03 for spheres and Zc ≃ 12.05 for polyhedra at 
the end of isotropic compaction, both remarkably close to 
the expected values. The small difference is due to the finite 
stiffness and overlaps between particles. This suggests that 
Zc is the relevant connectivity parameter for polyhedral par-
ticle packings, in contrast to Z which has a lower value ( ≃ 8 ) 
in the isostatic state. The same remarks apply to the defini-
tion of fabric tensor for polyhedra by considering that face-
face contacts are equivalent to 3 contact points and edge-face 
contacts to 2 contact points.

Figure 7 displays the evolution of Zc and ac during com-
pression. Consistently with the elastic moduli, at small shear 
strains ( < 10−5 ), both Zc and ac ≃ 0 (initially isotropic state) 
are constant and independent of �s due to the stability of 
the contact network. With the onset of particle rearrange-
ments, Zc decreases and tends to a constant value whereas ac 
initially increases as a result of the loss of contacts perpen-
dicular to the compression axis [6, 51]. The fabric anisotropy 
is larger in packings of polyhedral particles compared to 
spheres, and its peak value increases with �s.

The microstructure evolves also in terms of the dis-
tribution of different types of contacts. Figure 8 displays 
a snapshot of force chains in the isotropic (initial) state 
and near the stress peak with different colors for different 
contact types. The proportions Nt∕Nc of face-face contacts 

(11a)F1 = ∫Ω

n2
1
P(Ω)dΩ =

5 + 4ac

15
,

(11b)F2 = F3 = ∫Ω

n2
2
P(Ω)dΩ =

5 − 2ac

15
.

(12)Zc = 2(Ns + 2Nd + 3Nt)∕Np,

Fig. 6  Normalized bulk modulus as a function of shear strain �q for 
packings of spherical and dodecahedral particles with different values 
of friction coefficient �s . The lines are predictions by our proposed 
expression (29)

Fig. 7  Constraint number Zc (a) and fabric anisotropy ac (b) as a 
function of shear strain �q for packings of spherical and dodecahedral 
particles and different values of friction coefficient �s . The dashed 
and solid lines are for packings of spheres and dodecahedra, respec-
tively. The symbols represent instances where strain probes were 
applied
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declines from 0.14 in the isotropic state to 0.1 in the peak 
state although we distinctly observe columnar force chains 
of face-face contacts along the compression axis in the 
peak state. In a similar vein, the proportion Nd∕Nc of edge-
face contacts declines during compression. Hence, the 
larger proportion of single contacts near the stress peak 
is the necessary condition for the stability of columnar 
force chains [52].

6  Relation between elastic moduli 
and microstructure

The central issue that we address here is whether the values 
of elastic moduli shown in Figs. 4, 5, and 6 can be univocally 
expressed in terms of Zc and ac . The connection between elas-
ticity and granular microstructure has been previously inves-
tigated in the case of isotropic packings of spherical particles 
and compared with the predictions of EMT [19, 23, 26, 43]. 
We first derive analytical expressions of elastic moduli in the 
EMT framework for anisotropic media with orthotropic sym-
metry. Then, we compare our simulation data with its predic-
tions to propose a general expression which correctly predicts 
the evolution of elastic moduli all along triaxial compression 
from the isostatic state up to the stress peak state.

6.1  Elastic moduli from EMT

The medium is assumed to behave as a continuum with parti-
cle centers moving according to the applied strain field (affine 
assumption). Hence, in response to an incremental strain ��ij , 
the normal and tangential displacements at each contact are 
simply given by

where t⃗  represents a tangential unit vector. The contact 
forces can therefore be obtained from these displacements 
and the force laws (1) and (2).

Let (n⃗�, t⃗�, s⃗�) be a local frame associated with the branch 
vector �⃗ = �n⃗� joining the centers of two touching particles. 
In spherical coordinates, we have

where � is the azimuth and � is the latitude.
By affine assumption, the variation of � is given by

This variation leads to relative displacements �n , �t , and �s at 
any contact point between the two particles with its associ-
ated frame (n⃗, t⃗, s⃗) , n⃗ being normal unit vector to the contact 
plane. For spherical particles, this frame exactly coincides 
with the frame associated with the branch vector. Due to dis-
order, this property holds also on average in the case of two 
convex particles. Indeed, we checked that in our samples, 
we have n⃗ ⋅ n⃗� ≃ 1 . For this reason, we can use the contact 

(13)�n =��ijninj,

(14)�t =��ijnitj,

(15)

⎧⎪⎨⎪⎩

n⃗� =(cos 𝜃, sin 𝜃 cos𝜙, sin 𝜃 sin𝜙),

t⃗� =(− sin 𝜃, cos 𝜃 cos𝜙, cos 𝜃 sin𝜙),

s⃗� =(0,− sin𝜙, cos𝜙),

(16)𝛿�⃗ = ��n⃗�.

Fig. 8  Snapshot of the normal force network of a dodecahedral parti-
cle packing at isotropic state (a), and near stress peak (b) with friction 
coefficient �s = 0.1 . Line thickness is proportional to normal force. 
Single contacts are in white, double contacts in blue, and triple con-
tacts in brown. The compression axis is along the vertical direction. 
At isotropic state, the fractions of single, double and triple contacts 
are 0.5, 0.36, and 0.14, respectively. At stress peak state, they are 
0.59, 0.31, and 0.1, respectively
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frame together with the branch vector length to approximate 
the relative displacements at contact points:

From the contact displacements, we write down the elastic 
energy per unit volume ΔWe as a function of the strain ten-
sor � . Let kn and kt be the normal stiffness and tangential 
stiffness, respectively, and nc = Nc∕V  the contact number 
density in a volume V containing Nc contacts. Then, we have

where it has been assumed that the branch vector length � and 
contact orientation n⃗ are not correlated. Indeed, we checked 
that in our samples, we have ⟨� cos2 �⟩ ≃ ⟨�⟩⟨cos2 �⟩.

In the frame of the principal axes of the strain tensor � , 
we have

The average values ⟨(�n⃗ ⋅ n⃗)2⟩ , ⟨(�n⃗ ⋅ t⃗)2⟩ , and ⟨(�n⃗ ⋅ s⃗)2⟩ are 
evaluated by integrating their expressions from Eq. (19) over 
the angles � and � by using the probability distribution func-
tion P(�,�) given by Eq. (10). Once inserted in Eq. (18), an 
expression of the total elastic energy ΔWe is obtained as a 
function of nc , fabric anisotropy ac , contact parameters, and 
strain tensor coefficients.

By definition, the elastic moduli Cij are the second deriva-
tives of this energy function with respect to �ij:

where �t = kt∕kn is the stiffness ratio.

(17)

⎧
⎪⎨⎪⎩

𝛿n = 𝓁�n⃗ ⋅ n⃗,

𝛿t = 𝓁�n⃗ ⋅ t⃗,

𝛿s = 𝓁�n⃗ ⋅ s⃗.

(18)

ΔWe =
nckn

2
⟨𝛿2

n
⟩ + nckt

2
⟨𝛿2

t
⟩ + nckt

2
⟨𝛿2

s
⟩

=
nc

2
⟨𝓁2⟩[kn⟨(�n⃗ ⋅ n⃗)2⟩ + kt⟨(�n⃗ ⋅ t⃗)2⟩ + kt⟨(�n⃗ ⋅ s⃗)2⟩],

(19)

⎧⎪⎪⎨⎪⎪⎩

�n⃗ ⋅ n⃗ =𝜀11 cos
2 𝜃 + 𝜀22 sin

2 𝜃 cos2 𝜙 + 𝜀33 sin
2 𝜃 sin2 𝜙,

�n⃗ ⋅ t⃗ =
1

2
sin 2𝜃(−𝜀11 + 𝜀22 cos

2 𝜙 + 𝜀33 sin
2 𝜙),

�n⃗ ⋅ s⃗ =
1

2
sin 𝜃 sin 2𝜙(𝜀33 − 𝜀22).

(20)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C11 =
�2ΔWe

��2
11

= nc⟨�2⟩kn
�
3 + 2�t

15
+

24 + 4�t

105
ac

�
,

C22 =
�2ΔWe

��2
22

= nc⟨�2⟩kn
�
3 + 2�t

15
−

12 + 2�t

105
ac

�
,

C12 =
�2ΔWe

��11��22
= nc⟨�2⟩kn

�
1 − �t

�� 1

15
+

2

105
ac

�
,

C23 =
�2ΔWe

��22��33
= nc⟨�2⟩kn

�
1 − �t

�� 1

15
−

4

105
ac

�
,

The shear moduli C55 and C44 are given by the second 
derivatives of the energy function with respect to the vari-
ables �q = �11 − �22 and �q� = �22 − �33:

Finally, the bulk modulus K is the second derivative of 
the energy function with respect to the volumetric strain 
�v = �11 + �22 + �33,

Note that, we have C22 − C23 = 2C44 , so that the bulk modu-
lus can be expressed as a function of Cij:

6.2  Comparison with numerical results

The above expressions of elastic moduli based on EMT are 
proportional to the number density nc of contacts. It is easy 
to show that

where Vp is the average particle volume. Furthermore, the 
elastic moduli can be normalized by E∗ , which defines the 
reference value of all elastic moduli. Hence, following Eq. 
(22), the bulk modulus KEMT can be expressed as

where

Equation (25) suggests that the bulk modulus is propor-
tional to ΦZc with a prefactor depending mainly on the 
mean square distance ⟨�2⟩ between particle centers. This 
expression of K is the same as the one derived previously 
for isotropic granular materials composed of spherical par-
ticles [19, 23]. Here, it is extended to polyhedral particles 
by replacing Z by Zc . Figure 9 shows K as a function of ΦZc 
from all our simulation data at different instances of com-
pression. The EMT prediction is also plotted for comparison 
with the values of ⟨�2⟩ extracted from the simulations. All 
our data points, independently of friction coefficient, nicely 

(21)

⎧
⎪⎪⎨⎪⎪⎩

C55 =
�2ΔWe

��2
q

=
nc⟨�2⟩kn

30

�
2 + 3�t +

4 + 3�t

7
ac

�
,

C44 =
�2ΔWe

��2
q�

=
nc⟨�2⟩kn

30

�
2 + 3�t −

8 + 6�t

7
ac

�
.

(22)K =
�2ΔWe

��2
v

=
nc⟨�2⟩kn

9
.

(23)K =
C11 + 4C12 + 2C22 + 2C23

9
.

(24)nc =
ZcΦ

2Vp

,

(25)KEMT = mE∗ΦZc,

(26)m =
⟨�2⟩d
18Vp

.



Macro-elasticity of granular materials composed of polyhedral particles  

1 3

Page 9 of 12     6 

collapse on a straight line for both spherical and polyhe-
dral particle packings, as predicted by EMT, in exception 
to data points lying slightly above the line at low values of 
ΦZc . These data points represent actually the late stages of 
compression where the system is in the post-peak softening 
regime with intense particle rearrangements, leading to an 
over-estimation of elastic moduli.

While the predicted linear dependence of elastic moduli 
on ΦZc is in agreement with the simulation results, there are 
two key differences between the predicted values of bulk 
modulus KEMT and the values measured in simulations for 
both spherical and polyhedral particle packings. First, the 
prefactor m is higher in the simulations. Secondly, KEMT 
vanishes only when ZcΦ tends to zero whereas in the simu-
lations the bulk modulus vanishes for a finite value of ZcΦ . 
This means that the bulk modulus can be approximated as

where n is a parameter of negative value which depends 
on particle shape. The fitted values of n and m are given in 
Table 1 for different particle shapes together with the val-
ues predicted by EMT. The differences between the EMT 

(27)K = E∗(n + mΦZc),

prediction and the simulated values of n and m have their 
origin in the nonaffine relative particle displacements which 
contradict the EMT assumption of an affine displacement 
field [19, 21]; see below.

Interestingly, the non-zero value of n in the linear fit to the 
simulation data implies that K vanishes at ΦZc = −n∕m . This 
ratio is ≃ 2.6 for polyhedra and ≃ 1.65 for spheres. The vanish-
ing of K for a finite value of ΦZc is a reminiscent of unjamming 
transition at a finite value of Zc . Obviously, unjamming does 
not occur in our system during compression but Fig. 9 shows 
that the lowest values of ΦZc ( ≃ 2.4 for spheres and ≃ 3.1 for 
polyhedra) occur during post-peak softening and they are close 
to the values of −n∕m.

According to Eqs. (20) and (21), all elastic moduli Cij are 
proportional to K and their ratio depends linearly on the con-
tact orientation anisotropy ac:

where the parameters rij and sij depend on particle shape. 
This linear dependence on fabric anisotropy is indeed what 
we observe in Fig. 10 for all elastic moduli and for both 
polyhedral and spherical particle packings, but with values 
of rij and sij that deviate from those predicted by EMT due 
to nonaffine displacement field; see Table 1.

6.3  General expression of elastic moduli

Based on the simulation data and effective medium theory dis-
cussed previously, we propose the following analytical expres-
sion for the five orthotropic elastic moduli:

The EMT predictions of n, m, rij , and sij are shown in Table 1 
together with their values measured from our simulations for 
the three particle shapes. This expression relates in a univo-
cal way the elastic moduli to the microstructure of granular 
materials under transversely isotropic symmetry. With its 
parameter values given in Table 1, it allows us to predict the 
evolution of elastic moduli as a function of shear strain �q 

(28)Cij = K(rij + sijac),

(29)Cij = E∗(n + mΦZc)(rij + sijac).

Fig. 9  Normalized bulk modulus K∕E∗ as a function of ΦZc from 
simulations of dodecahedral and spherical particle packings. The thin 
lines are linear fits to the data. The thick lines represent predictions of 
EMT for polyhedra (solid line) and spheres (dashed line)

Table 1  Fitting parameters in Eq. (29) for elastic moduli from the effective medium theory (EMT) and DEM simulations of the three particle 
shapes

C
11

C
22

C
12

C
23

C
44

C
55

K

r
11

s
11

r
22

s
22

r
12

s
12

r
23

s
23

r
44

s
44

r
55

s
55

n m

EMT (expression) 9+6�t

5

72+12�t

35

9+6�t

5
-36+6�t

35

3−3�t

5

6−6�t

35

3−3�t

5
-12−12�t

35

6+9�t

10
-12+9�t

35

6+9�t

10

12+9�t

70

0 ⟨�2⟩d
18Vp

EMT (value) 2.760 2.332 2.760 −1.166 0.120 0.034 0.120 −0.069 1.320 −0.549 1.320 0.274 0 0.105
Simulation (dodecahedra) 2.617 4.151 2.542 −3.258 0.225 0.387 0.213 0.100 1.132 −1.694 1.234 0.500 −0.378 0.145
Simulation (icosahedra) 2.547 4.565 2.563 −3.482 0.223 0.500 0.215 0.200 1.154 −2.176 1.172 0.932 −0.400 0.150
Simulation (spheres) 2.490 3.105 2.490 −2.812 0.240 0.255 0.250 0.080 1.065 −2.000 1.087 0.120 −0.265 0.160
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from that of Zc and ac extracted from simulations. Figures 4, 
5, and 6 show the evolution of the elastic moduli according 
to this analytical expression together with their measured 
values from simulations. We see that this expression follows 
amazingly well the simulation data from the isostatic state 
up to the stress peak state. The observed “wavy" feature of 
the evolution of elastic moduli observed in these figures can 
therefore be explained as a consequence of the multiplica-
tive contributions of the isotropic part n + mΦZc and the 
anisotropic part rij + sijac with decreasing Zc and increasing 
ac during compression.

It is remarkable that the model parameters n, m, rij , and 
sij are independent of friction coefficient. The differences 
between elastic moduli for different values of �s arise there-
fore from the effect of the latter on the evolution of Zc and 
ac . The values of parameters in Table 1 show also that the 
higher value of K in the case of polyhedral particle packings 
compared to that of the sphere packing is mainly due to the 

higher values of ZcΦ rather than the smaller variations of 
the model parameters. Furthermore, the dodecahedral and 
icosahedral particle packings have slightly different elastic 
moduli. A detailed comparison between the elastic moduli 
of polyhedral particle packings with different numbers of 
faces will be presented elsewhere.

The observed linear dependence of the elastic moduli 
on ZcΦ and ac in our simulations suggests that, despite the 
evolution of the microstructure the level of nonaffine dis-
placements is nearly constant during triaxial compression. 
To check this point, we investigated the nonaffine displace-
ments in our simulations. Several methods can be used to 
quantify the level of nonaffinity [53–56]. We used a measure 
of non-affinity from the relative particle displacements. Let 
�r�

z
= �ri

z
− �r

j
z be the relative displacement at the contact 

� between particles i and j projected along the z direction 
and �� the length of the branch vector joining their centers. 
Then, the actual strain increment at contact � along the z 
direction is ���

z
= �r�

z
∕�� . We define the nonaffinity � along 

the compression axis as

where the averages run over all contacts inside the pack-
ing. Note also that the average ⟨��z⟩ is simply equal to the 
mean affine displacement imposed when probing the elastic 
response.

We calculated � at all probing instances and Fig. 11 dis-
plays its evolution for the three particle shapes in the case 
�s = 0.1 (the evolution being similar for other values of �s ). 
Interestingly, � has nearly the same value for all shapes dur-
ing compression and increases slowly from ≃ 0.2 at low 
compression until the stress peak at �q ≃ 5 × 10−2 . Beyond 
this point, it grows rapidly to higher values as a result of 
softening and unstable particle motions. This is consistent 
with the evolution of the elastic moduli shown in Fig. 9, 

(30)� =

√⟨(��z)2⟩ − ⟨��z⟩2
⟨��z⟩ ,

Fig. 10  Normalized moduli Cij∕K as a function of fabric anisotropy 
ac for the dodecahedral (a) and spherical (b) particle packings from 
simulations with different values of the friction coefficient, together 
with theoretical prediction (c) based on the EMT. The straight lines 
are the best linear fits to the data points. The data of icosahedra is 
shown in Supplemental Material and it follows a similar evolution

Fig. 11  Level of non-affinity � (Eq. (30)) as a function of shear strain 
�q for packings of spherical and dodecahedral particles with friction 
coefficient �s = 0.1
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where the corresponding data points deviate from expression 
(29). The nearly constant level of non-affinity before stress 
peak explains the linear dependence of elastic moduli on the 
microstructural prameters Zc and ac and thus the constant 
values of the parameters n, m, rij , and sij in the analytical 
expression (29) implying that their values are almost only 
functions of particle shape. Obviously, the small second-
order effects arising from the dependence of non-affinity on 
the increasing anisotropy of the packing during compres-
sion are not observable within the statistical precision of 
our simulation data.

7  Conclusion

We derived a general expression (29) of the orthotropic 
elastic moduli of granular materials under triaxial bound-
ary conditions as a function of microstructural parameters 
for three different particle shapes and four different values 
of the interparticle friction coefficient. This expression 
reveals three different origins of elastic moduli: a stress 
scale E∗ , an isotropic part, and an anisotropic part. The 
characteristic stress E∗ depends on the force model. In our 
linear force model, its value is simply kn∕d , but for a Hertz 
contact, which is obviously not adapted to faceted particles, 
it should be multiplied by a ratio {p∕(ẼZcΦ)}1∕3 , where 
Ẽ = E∕(1 − 𝜈2) is the reduced elastic modulus [20, 23, 24], 
and makes depend the moduli on the confining pressure.

The effect of particle shape appears at two levels: on the 
one hand, through the parameters n, m, rij , and sij , which 
do not depend on friction coefficient and are not neither 
expected to depend on p for Hertzian contacts, and on the 
other hand, through the microstructure via the values of Zc 
and ac , which depend on both particle shape and friction 
coefficient �s . While the expression (29) provides a power-
ful model of elastic moduli in the hardening regime (before 
stress peak) with a clear distinction between the two effects 
of particle shape, our results indicate that, due to unstable 
particle rearrangements, the measurement of elastic moduli 
in the softening regime requires strain probes well below 
10−5 used in this work throughout triaxial compression.

The expression (29) makes it possible to extract the val-
ues of Zc and ac and the model parameters n, m, rij , and 
sij from experimental measurements of the elastic moduli. 
This is specially relevant for granular materials composed 
of aspherical particle shapes whose elastic properties have 
not yet been a subject of systematic investigation. More 
work is currently underway to further validate Eq. (29) for 
other particle shapes, different values of the stiffness ratio, 
and different boundary conditions. A detailed comparison 
of the elastic moduli of polyhedral particle packings with 
increasing number of faces will be published in a forthcom-
ing paper.
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