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a b s t r a c t

High-density compaction of ductile powder particles is characterized by a sharp increase of the inter-

particle normal contact force. This is due to both complex contact interactions and plastic incompres-

sibility of the particle constitutive material. A DEM model (OPEN-DEM YADE) using an interaction

force-law reproducing this increase has been developed to simulate high-density compaction of ductile

powders. Its formulation is derived from a Finite Element Method model (ABAQUS). Macroscopic

stresses resulting from compaction tests carried out on a random assembly of spherical grains were

computed with both models and then compared. A good agreement between the stress–density curves

confirmed the accuracy of the DEM formulation. However, the role of the grain deformation may not be

well described using DEM since it is based on an assumption of overlapping rigid particles but allows

low calculation costs. To highlight the role of this deformation process, a detailed FEM-based analysis

of the influence of contact impingement on the normal contact force is thus presented. It explores the

mechanisms of stress transmission between contact zones and quantifies the appearance of contact

interactions in terms of both indentation depth and relative density. Results show that contact

impingement cannot be neglected at a relative density as low as 0.7 if a local, contact-scale analysis

is aimed for (such as density distribution for instance). In such a case, previous models like the one

proposed by Storåkers and co-authors, should be used with care. The local solid fraction provides a

correct local description of both contact interactions and plastic incompressibility of the constitutive

material of the grains up to the maximum density. This would allow the DEM to be successfully applied

to large-scale simulations of high-density compaction.

Crown Copyright & 2012 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Powder metallurgy has long been an attractive technology for
both advanced and conventional materials. The material proper-
ties can be obtained by mixing different powder materials and
producing near net shape parts which is the major advantage of
this method. In many applications, powder parts are compacted
up to a relative density as high as possible (more than 0.95), for
strength and homogeneity. A numerical tool which would prop-
erly predict the mechanical constitutive behavior of the powder
during all the forming process is a key issue for manufacturers.
With this in mind, plasticity and elasticity phenomena, internal
friction of the porous medium and frictional effects between
the die walls must be considered. Continuum models based on
012 Published by Elsevier Ltd. All
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Drucker Prager Cap model [12,11] are currently used by indus-
trials, but they are limited for several basic applications, such as
the calculation of stresses during compaction [14]. Such models
are based on complex and expensive experimental devices, which
only give information on few loading paths. As a result, they fail
to describe the material’s behavior for other loadings or complex
loading histories. To overcome this problem, and to further
understand the complex relations between the grains behavior
and the aggregates behavior, the problem of the mechanical
behavior of powders has been addressed from a micromechanical
perspective. Arzt [3], for instance, studied the influence of the
coordination number on the compaction and sintering of pow-
ders. A micromechanical model is then proposed by Fischmeister
and Artz [15] by assuming that the movement of the particles can
be described as an isotropic homogeneous densification. Fleck
et al. [17], then Fleck [16] and Storåkers et al. [44] proposed a
model for the first part of compaction (stage I compaction), by
applying a homogeneous strain field to the particles. This model
has been compared with experiments by Akisanya et al. [2],
rights reserved.
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Sridhar and Fleck [42] and Cocks [8]. Cocks and Sinka [9] and
Sinka and Cocks [40] carried out investigations on similar bases,
while presenting a framework for the modeling and the experi-
mental calibration of powder compaction.

Over the last decade, the Discrete Element Method (DEM) [10]
has been applied to the compaction of powders. Heyliger and
McMeeking [24] and Martin [32] compared results from the DEM
to a homogeneous strain field model. Several studies have been
carried out, such as those of Martin and Bouvard [33], Martin et al.
[34], Skrinjar and Larsson [41], Pizette et al. [36]. The core of the
DEM is the contact law, which describes the relationship between
the contact force and the relative displacement of two particles in
contact. For cold compaction of metal powders, it is commonly
assumed that the main phenomenon to be studied at the contact
scale is plasticity. Therefore, the right contact laws to be used
have to describe correctly the plastic indentation of two solid
particles. Vu-Quoc and Zhang [46] and Vu-Quoc et al. [47]
proposed a contact model accounting for plasticity, but their
model is valid in the context of granular flows, where the
deformations involved remain very small. However, the problem
of plastic indentation of two particles is to be put together with
the Brinell or Vickers indentation problem [28,25]. In this context,
Storåkers et al. [43] have developed a plastic contact law for
power-law strain-hardening solids, which has been intensively
applied in DEM simulations and homogeneous strain field mod-
eling of powder compaction by most of the previously cited
authors. But the modeling of powder compaction by the discrete
element method up to a relative density higher than 0.8–0.85 is
not yet valid, because the implementation of such contact laws in
micromechanical models has the major inconvenient of consider-
ing the mechanical and geometrical independence of contacts
during the densification. Preliminary studies by Harthong et al.
[23] introduced a high-density contact law for the DEM based on
finite element simulations.

In parallel, another discrete numerical approach based on the
finite-element method has emerged. Here, this method will be
referred to as the Multi-Particle Finite Element Method (MPFEM)
[21,20,48,38]. It has the significant advantage of describing very
accurately the deformation and the movement of the particles,
and to be usable with classical and well-known constitutive
laws to describe the particle material. The main limitation of
the method is the calculation time needed when considering
assemblies of numerous meshed particles. First developed for
two-dimensional particles, it has been applied recently to 3D
particles by Chen [6,7] and Frenning [18,19]. Using this method,
Schmidt et al. [39] and Harthong et al. [22] derived yield surfaces
from an assembly of 3D elastic–plastic meshed particles.

Both DEM and MPFEM may be powerful tools to understand
the microstructural phenomena which lead to the well-known or
less-known macroscopic aspects of powder compaction. Both
methods consist in representing the powder by discrete particles
(assumed spherical in most cases) and modeling the interaction
between the particles. However, the computational cost of the
MPFEM remains too high to perform simulations on a realistic
number of particles, even though it gives more information and it
appears more accurate and reliable. This is the reason why the
DEM appears as the best practical compromise between accuracy
and calculation efficiency.

The new contact law for the DEM presented in Harthong et al.
[23] was validated on the basis of DEM and MPFEM frictionless
simulations on a 32-sphere assembly. The aim of the present
paper is to present an analysis of the mechanisms of complex
interactions at contact zones between grains in the context of
high-density compaction. This analysis is focused on a DEM
application, and thus underlines and explains the limits of a
previous model [43] in an application such as powder metallurgy,
which have never been discussed before. This is the reason why,
after a short description of the main features of DEM and MPFEM
in Section 2, the first part of this paper details, in Section 3, the
DEM implementation of a contact model based on Harthong et al.
[23]. These DEM simulations are used as a basis to understand the
relations between contact models and overall or macroscopic
behavior. Section 4 finally discusses the results of the contact
models using MPFEM results as a reference.
2. MPFEM and DEM approaches

2.1. Multi-particle finite element method

The multi-particle finite element method (MPFEM) consists in
performing classical finite element simulations on an assembly of
discrete particles. These particles are meshed and their interac-
tions are ruled by classical finite-element contact conditions. In
the present work, the method has been applied by using the finite
element code ABAQUS. The interactions are modeled by a penalty
contact algorithm, where the nodal forces are proportional to the
penetration between the surfaces, and by a Coulomb friction with
a friction coefficient f (with the same value for both sphere/sphere
and sphere/wall contacts). The details of the contact modeling
and finite element implementation can be found in ABAQUS [1].
No contact cohesion was considered here.

The constitutive law of individual particles corresponds to a
Von-Mises type, elastic–plastic material with strain hardening. The
evolution of the yield surface is calculated through a power-law:

s¼ s0e1=m ð1Þ

where s and e are respectively the Von Mises equivalent stress and
strain, s0 is the hardening modulus, and 1=m is the plastic
exponent. The elastic part is assumed linear and isotropic, with
elastic modulus E and Poisson’s coefficient n.

Previous studies by Chen et al. [6,7], comparing experimental
and numerical results, involved lead alloy as the constitutive
material of the particles. We chose the same material, with the
following numerical values of E, n, s0 and m:

E¼ 10;000 MPa

n¼ 0:435

s0 ¼ 20:5 MPa

m¼ 4:16

8>>><
>>>:

ð2Þ

The same authors [6,7] also determined the value of the
friction coefficient between lead spheres to be f¼0.1 on the basis
of numerical simulation and literature search ([4] for instance).
Moreover, the choice of such a low value was very convenient to
reduce the calculation time required for the MPFEM simulations.

The mesh was designed to provide a correct description of the
contact forces at the local scale. It includes 2600 quadratic
tetrahedral elements per sphere (Fig. 2).

2.2. Discrete element method

In DEM, spherical particles are not meshed and can be defined
only with the coordinates of their center, their radius and mass.
For each increment of time, the center-to-center distances are
calculated. Usually, deformation is supposed to occur only in a
small contact zone so that the relative displacement hij between
particles i and j is enough to represent the deformation, and to
evaluate a force Fij from a so-called force-law; see Fig. 1. In other
words, particles are rigid but contact deformation is modeled
anyway, with the help of the overlap hij. At a given time step, the
total force and moment acting on the mass center of each particle



Fig. 1. Indentation of two spheres.

Fig. 2. 32-Sphere random packing (here in the case of MPFEM).
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are used to compute its acceleration. The positions of the particles
are then obtained from the integration of Newton’s equations.

The high-density model and the similarity solution from
Storåkers et al. [43] were implemented in the open-source code
YADE [29,30,45] to study the response of random assemblies of
spheres. To this end, the force-law was completed by a simplified
elastic and friction force-law. As for MPFEM simulations, no
cohesion was considered here. At high-density, the deformation
of the particles can no longer be considered as localized, and the
contact zones cannot be supposed independent. Since the relative
displacement hij is a convenient variable, it is still used in
the high-density model to compute the normal force. A second
variable is added to account for the shape evolution of each
particle and contact interactions. This variable is the local solid
fraction which will be described in more details together with the
contact models in Section 3.
Fig. 3. (a) Definition of the radical plane between two spheres. MPi and MPj are

tangent to the spheres. (b) Radical Voronoi graph (radical planes in plain lines) of

spheres in the vicinity of a plane. The Voronoi graph that would be obtained by

tessellating spheres centers is superimposed for comparison (bisector planes with

dashed lines).
2.3. 32-Sphere sample

For this study, we use a random assembly of 32 monosized
spheres illustrated in Fig. 2. The initial assembly is strictly the
same for both the MPFEM and DEM simulations. The only
difference is that spheres are not meshed in the case of DEM
simulations. This sample was generated using the discrete ele-
ment approach by increasing the radius of each sphere in a fixed
cube until the pressure stabilizes at a given value. The initial
relative density is 0.48, and all particles have the same constitu-
tive material. The loadings applied to this assembly are the
classical isotropic and die compaction.
3. DEM simulations

As suggested before, classical DEM force-laws assume that
contact zones are small and independent. When these assump-
tions are valid, hij is a convenient variable to describe contact
deformation. Since the modeling of high-density compaction at
least requires the description of interactions between neighboring
contacts [34], the local solid fraction is added to formulate our
high-density model.

In this section, the computation of the local solid fraction,
which is needed for the high-density model, is first described in
Section 3.1. With this parameter, an elastic–plastic high-density
model can be defined using a plastic force obtained following
Harthong et al. [23]. These modifications are introduced in
Section 3.2. Comparison between MPFEM and DEM results are
presented in Section 3.3.

3.1. Local solid fraction

To define a solid fraction at the particle scale, it is necessary to
split the overall volume into smaller cells surrounding each
particle such that the sum of all the cell volumes is equal to the
overall volume. To achieve this, we use a radical Voronoi tessella-
tion. The radical Voronoi graph is the dual of the weighted
Delaunay triangulation (also called ‘‘regular’’ triangulation in
[13]), where a weighted point Cn

¼ ðC,wÞ can be seen as a sphere
of center C and radius R¼

ffiffiffiffi
w
p

. Generally speaking, the Voronoi
tessellation (radical or not) of a set of points Ci is a partition of the
space assigning each point M of the space to the closest Ci. In the
case of radical tessellation, the distance between a point M and a
weighted point Cn

i ¼ ðCi,wiÞ is defined as JMCn

i J
2
¼ JMCiJ

2
�wi (this

distance is MCi in Fig. 3a). With this measure of distance, the set
of points M equally distant from two weighted points Cn

i and Cn

j is
a plane, called ‘‘radical’’ plane (D in Fig. 3a), and the portion of
space associated to one sphere is a polyhedron (Figs. 3b and 4).

The radical tessellation of a set of weighted points Cn

i ¼ ðCi,wiÞ

is exactly the same as the usual Voronoi tessellation of the single
points set Ci if all weights are equal, since bisector planes and
radical planes coincide in that case. However, the ‘‘radical’’
variant has the advantage of giving a relevant partition even in
the case of unequal diameters, in the sense that each particle will
be inscribed in the corresponding cell-volume (see Fig. 3b). This
feature was judged mandatory in anticipation of numerical
simulations of non-uniform particle sizes, not presented here.
The properties of radical tessellation also enabled the modeling of
the rigid plates on each side of the packing as spheres of very
large size (106 times the size of the packing), as seen in Fig. 3b.
Based on this graph, the local solid fraction ri assigned to a sphere



Fig. 4. View (from top) of the radical Voronoi graph of the packing (a) at initial

state and (b) after die compaction. The facets of the polyhedron associated to a

specific sphere are shaded for visualization.
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of volume Vs is defined as

ri ¼
Vs

Vi
, ð3Þ

Vi being the volume of the polyhedron associated to sphere i, as
seen in Fig. 4.

The construction of the Voronoi graph has been implemented
in YADE using the open source library Computational Geometry
Algorithms Library [5], which offers a flexible and efficient set of
functions to construct the Delaunay and Voronoi graphs. This
library gives the best possible scaling in terms of computation
time, as the algorithm complexity of constructing the graphs
scales linearly with the number of points [31]. The Voronoi graph
of the 32-sphere assembly is shown in Fig. 4 for low and high
relative density. The graph is updated at each time-step, so that
the values of local solid fraction reflect the volume change of the
packing.
1 The contact force is zero when the contact appears, but S1 is nonzero in any

case, and S2 is zero or nonzero, depending on the situation.
2 Because of periodicity, the local solid fraction is equal to the relative density

in this case.
3.2. Elastic–plastic high-density model

In Harthong et al. [23], a DEM contact law is presented, to
perform DEM simulations of high-density compaction. This work
is based on finite element analyses of particular periodic lattices
which give information on high-density effects on the contact
forces. The finite element simulations, based on the material
defined in Section 2.1, show that the increase of the contact force
linked to interactions between neighboring contacts is related to
plastic incompressibility. Consequently, the local solid fraction
parameter ri defined by Eq. (3) is introduced to take into account
the incompressibility of particles, by imposing the condition that
the contact force has a vertical asymptote when the local solid
fraction tends to 1 (in practice, the solid fraction can be slightly
higher than 1 because of elastic compressibility).

At the contact level between spheres i and j, the average local
solid fraction is defined as

rij ¼
1
2ðriþrjÞ ð4Þ

The contact law of Harthong et al. [23] is formulated for
contacts between identical spheres, i.e., of the same radius R

and the same material defined by s0 and m. The contact force is
given by

Fpl
ij ðtþDtÞ ¼ Fpl

ij ðtÞþSpl
ij ðhij,rijÞ:DhijðtÞ ð5Þ

t being the current time and Dt the time increment, other
notations are given in Fig. 1. The stiffness Sij is expressed as the
sum of two terms:

Spl
ij

hij

R
,rij,n

� �
¼ S1

hij

R
,n

� �
þS2ðrij,nÞ ð6Þ
where S1 represents the indentation force for an isolated contact,
corresponding to the simple compression of an isolated sphere
(Eq. (7) is valid up to hij=R¼ 1Þ:

S1

s0R
¼ a1ðmÞexp b1ðmÞ

hij

R

� �
þg1ðmÞexp �d1

hij

R

� �
ð7Þ

and S2 corresponds to an increase of the contact force caused by
plastic Von Mises incompressibility and interactions between
neighboring contacts. Its form ensures that S2 is zero or negligible
when rij is close to its initial value r0

ij, and it tends to infinity
when rij tends to 1:

S2

s0R
¼ a2ðmÞ

½maxð0,rij�rref
ij Þ�

2

1�rij

ð8Þ

rref
ij is a reference local solid fraction. In Harthong et al. [23], rref

ij is
the average local solid fraction when the contact appears. In the
present work it is replaced by

rref
ij ¼maxðrmin

0 ,r0
ijÞ ð9Þ

where r0
ij is the value of rij in the undeformed assembly, and rmin

0

is an average minimal value, under which a sphere cannot develop
any resistance to compressibility. This choice implies that:
�
 If the average local solid fraction rij in the undeformed
assembly is lower than rmin

0 , resistance to compressibility
(represented by S2) only appears when rij reaches rmin

0 .

�
 If the average local solid fraction rij in the undeformed

assembly is higher than rmin
0 , and spheres i and j are initially

in contact, resistance to compressibility appears immediately
at the beginning of the loading (S2 is zero and increases with
compaction).

�
 If the average local solid fraction rij in the undeformed

assembly is higher than rmin
0 , but spheres i and j are not

initially in contact, then resistance to compressibility appears
when the contact appears. But, in this case, S2 is nonzero when
the contact appears,1 and consequently the total stiffness Sij

pl is
higher. This expresses that the spheres already developed
resistance to compressibility through the preceding contacts.

In practical terms, we chose rmin
0 C0:52, which is the initial

solid fraction2 of the simple cubic structure which has been used
to calibrate Eq. (6) [23].

Then, the parameters a1,b1,g1,d1 and a2 are defined as

a1ðmÞ ¼ 0:97�
0:58

m

b1ðmÞ ¼ 1:75 1þ
1

2m

� �

g1ðmÞ ¼
15m

3þm
�4

d1 ¼ 8

a2ðmÞ ¼ 15 1�
1

2m

� �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð10Þ

Eqs. (6)–(10) are intended to cover the whole range of m from
1 (linear stress–strain relationship) to1 (perfect plasticity), and a
range of h=R from 0 to 1.

Using Eq. (3) as a definition for the local solid fraction, this
plastic model can be implemented in a DEM code, but elasticity
and friction must also be considered to include qualitative effects
in the simulations, in particular in the rearrangement stages



Fig. 5. Illustration of the contact normal force, for cyclic loadings. For clarity, the

elastic stiffness is very much softened.
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where elastic unloading and friction are involved. We introduced

a constant linear elastic stiffness kel
n in the normal direction, and

kel
t in the tangent direction. Since the present study is limited to

monotonic compressive loadings, it may be acceptable to scale
the elastic stiffness to a value lower than the physical one, in
order to limit computation time (increased time increment). This
approach implies that the physical elastic stiffness (which is
known to be nonlinear and history dependent) is too high to be
represented with the time increments used in our simulations.

Then, the chosen value is the maximum stiffness kel
n compatible

with the size of the time increment (usually chosen as a fraction

of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=kel

n

q
, where M is the mass of the smallest particle).

Using such a model results in an underestimation of the
stiffness at high relative density. However, higher stiffnesses can
be reached with longer simulations or by increasing the time step
before reaching the critical value of relative density, which can be
easily calculated from Eqs. (6)–(10), and decreasing it afterwards.
The actual value of stiffness and time step used in this work
actually depended on the simulations. For instance, the value of
the plastic adimensional stiffness Spl

ij =s0R predicted by the high-
density model for h=R¼ 0:75 and rij ¼ 0:95 (this values corre-
spond to die compaction of the simple cubic cell as presented in
Fig. 14) is approximately 51. This value corresponds to a stiffness
Spl

ij ¼ 1:62� 105 N m�1. Using a safety coefficient of 0.5 for the
time step in the DEM simulations, along with a volumic mass of
11;400 kg m�3 and monosized spheres of initial radius 0.153 mm,
the time step required to get this stiffness is 5:1� 10�7 s. The
influence of the scaling of the elastic stiffness for local unloading
is expected to be really negligible since local unloading only
happened during the rearrangement phase in our simulations,
which only concerns low relative densities and very low relative
displacement ranges.

The direction of the tangential force Ft
ij is defined by the

direction of the incremental tangential displacement. The magni-
tude of Ft

ij is increased gradually, with stiffness kel
t , and is

thresholded during the sliding stage to fFn
ij, where f is the friction

coefficient. A simple expression for kel
t is adopted:

kel
t ¼ 0:5kel

n ð11Þ

Combining elastic and plastic stiffnesses, a classical elastic–
plastic model is formulated by assigning an elastic or plastic
stiffness depending on whether the contact is unloading/reload-
ing or in the plastic regime.

To ensure convergence, the plastic stiffness must not tend to
infinity. Therefore, in the case of the high-density model, Sij

pl

(defined by Eq. (6)) is limited as follows:

Spl0
ij ¼minðSpl

ij ,kel
n Þ ð12Þ

Fig. 5 illustrates the normal force obtained under these
considerations.

3.3. Die compaction of a 32-sphere assembly

The stress response of a representative random assembly of
spheres to every loading direction in the stress space is of critical
importance to derive a constitutive law for continuum finite
element analyses. Here our 32-sphere sample is not representa-
tive of a continuum material, and it is only intended to compare
the results of the two methods in a reasonable calculation time. It
should be emphasized that the high-density model only evaluates
the normal contact force. Very simplified tangential or rotational
behavior is implemented in the present DEM simulations. As a
result, it is not expected that comparable kinematics will be
obtained with both methods.
Comparison between MPFEM and DEM simulations, with the
high-density model and with Storåker’s model for 32-sphere
assemblies, is presented in Jerier et al. [27] in the case of
frictionless particles. Both isotropic and die compaction are
studied in this preceding paper. The 32-sphere assembly is
compressed by rigid walls using both methods. The macroscopic
wall stresses, defined as the resulting forces on each wall, divided
by the corresponding current area, were recorded together with
the overall relative density during die and isotropic compression
tests. Fig. 6 shows the wall stresses – relative density curves for
the 32-sphere assembly under die compaction with a friction
coefficient f¼0.1. For this loading, all four lateral walls remain
fixed and the compaction is made by the displacement of both
axial walls along the Z-direction. Fig. 6 shows a good agreement
between DEM and MPFEM up to a density of 0.95 with the high-
density model, with a small discrepancy for the Z-Wall. The DEM
with Storåkers’s law gives valuable predictions only up to a
relative density of about 0.9. Note in passing that the DEM
simulations have been stopped at a relative density of 0.95,
because this value was considered large enough to cover indus-
trial needs. However, local validation of the high-density model
has been achieved using MPFEM up to a relative density up to
0.98 (see Figs. 14 and 7 for instance) showing that the high-
density model can capture the behaviour of contact forces up to
this value of relative density.

This shows that the contact normal force derived from the
high-density model in the DEM leads to a good concordance with
the MPFEM for the stresses. The simplified tangential force
implemented accounts for frictional effects in a rather satisfying
way. Furthermore, Storåkers’s model leads to a correct prediction
up to relative densities of about 0.85 for the macroscopic wall
stresses. As an additional remark, isotropic and die compaction,
which have been tested here and in Jerier et al. [27], are quite
representative of the loadings involved in the industrial densifi-
cation processes, and it is expected that the results shown here
can be considered as valid for the range of stresses with similar
triaxialities. Thus it seems that the macroscopic wall stresses are
closely linked with the contact normal force. However, it is
expected that the contribution of the tangential contact force
increases when the loadings become more deviatoric. In indus-
trial processes, friction against the walls and geometric singula-
rities can lead to highly deviatoric loadings, which are of
particular importance as they can result in cracking problems.
The present paper does not account for cracking, as it appears
senseless in the absence of cohesion, but the question of whether
the response from both methods is similar or not under highly
deviatoric stresses remains an open question.

Fig. 7 shows the evolution of the contact force for a single
contact chosen in the 32-sphere packing. Two spheres are
selected in the central part of the assembly and have no contact



Fig. 7. Evolution of the contact force between two spheres in an assembly of 32 spheres under isotropic compaction. (a) Deformed configuration of the spheres in contact.

(b) Contact force as a function of the indentation depth. (c) Contact force as a function of the average local solid fraction. Due to the small number of particles in the

packing, the local solid fraction is quite homogeneous, so that the evolution of the local solid fraction rij is very close to the evolution of the macroscopic density D of the

packing. Both quantities evolve from 0.48 to 0.98 during the MPFEM simulation.

Fig. 6. Comparison between DEM and MPFEM stress–density curves for die compaction of 32 lead spheres in random packing with friction (f¼0.1). The stresses are

measured along: (a) the X-axis, (b) the Y-axis, and (c) the Z-axis.
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Fig. 8. Single-sphere loadings: (a) simple compression of two spheres; (b) isotropic

compaction of a simple cubic periodic cell; (c) die compaction of a simple cubic

periodic cell.

Fig. 9. Finite element meshes (a) for a single sphere, and (b) for the study of

contact surfaces in simple compression.

B. Harthong et al. / International Journal of Mechanical Sciences 61 (2012) 32–4338
with the compressing walls, in order to avoid potential edge
effects. Furthermore, these spheres are in contact in the unde-
formed configuration, to avoid the difficulties linked with the
tracking of new contacts appearing during compaction [23].
While the assembly is submitted to an isotropic compaction, the
positions of the central node of each of the 32 spheres are saved.
These data are then used to calculate a relative displacement hij

and to build the Voronoi cells of the two studied spheres, to
finally derive an average local solid fraction rij from MPFEM
simulations.

This approach assimilates the center of a sphere (in the sense
of the DEM) to the central node of the meshed sphere in the
MPFEM; but we believe that this leads to a good approximation of
the evolution of the local solid fraction. It is thus possible to
obtain information on how the high-density model represents the
normal contact force in several configurations, by separating the
normal contact force from friction, rotations or other contribu-
tions, which may differ between MPFEM and DEM and lead to
significant differences in the kinematics. Under these assump-
tions, the evolution of the contact force between the chosen
spheres is shown in Fig. 7 as a function of hij and rij, from the
MPFEM, the high-density model and Storåkers’s model. In this
case, the latter overestimates the contact force up to rijC0:95
while the high-density model shows a correct agreement with the
MPFEM. As an effect of confinement, the contact force increases
significantly for rij40:8, such that it eventually becomes higher
than predicted by Storåkers’s model beyond the value of 0.95. As a
remark, it is noteworthy that if the force–displacement relation-
ship predicted by Storåkers model seems linear, it is actually not.
The non-linearity of the curve shown in Fig. 7b is difficult to see
because it mainly concerns a range of h=R values smaller than
0.05. This can be double-checked in Fig. 10.

The theory of Storåkers and co-workers is known to give
valuable predictions up to relative densities of about 0.85 when
associated to the DEM [34]. This result shows that, despite this, it
does not reproduce the local contact force very well in some
particular cases. Although this example is just a particular case, it
raises the fact that Storåkers model only gives valuable results in
average. Using Storåkers model would thus result in overestimat-
ing the contact force of some contacts and underestimating the
contact force of other contacts. The macroscopic average stresses
can be expected to be accurate up to a relative density of at least
0.8. However, local information such as for example, distribution
of relative density, should not be expected to be reliable for
relative densities as low as 0.5 or 0.6. This issue is investigated in
details in Section 4.
4. Discussion: normal contact force in high-density
compaction

To make this point clearer, and explore further the local
mechanisms which rule the normal contact force, three stages
of the compaction are explored: spherical indentation, with large
displacements (Section 4.1); contact interactions (Section 4.2);
and high-density behavior (Section 4.3). Thus, the 32-sphere
assembly is exploited, but it also seems useful to introduce some
results from single-sphere simulations. Single-sphere models
easily give the contact forces on one single particle while keeping
a reasonable size for the output files. The models simulate
two isolated spheres indenting each other (Fig. 8a) and a simple
cubic elementary cell under isotropic (Fig. 8b) or die (Fig. 8c)
compaction.

The finite element meshes are shown in Fig. 9. For simple
compression, the mesh is refined in the contact region to obtain
reliable results on contact surfaces (Fig. 9b).
4.1. Simple compression (spherical indentation with large

displacements)

Spherical indentation is studied here through the simple
compression test defined in Fig. 8a. The results of non-linear
deformation can thus be separated from confinement or contact
impingement. This section compares results from MPFEM and
contact models from Section 3 to underline the range of hij=R

where the models are valid. Moreover, we try to quantify the
range of hij=R expected to be useful in the modeling of high-
density compaction.

Fig. 10 shows the force–displacement curves obtained for a
simple compression with MPFEM simulations, Storåkers’s model
and the high-density model. For the high-density model, it is
considered that rij ¼ 0 (a sphere in a cell of infinite volume), such
that the stiffness reduces to S1 defined by Eq. (7). The material
parameters correspond to lead (cf. Eq. (2)). For comparison needs,
two fictitious materials are also used, with the same parameters
except m (equal to infinity and 1.67). The radius of the spheres is
R¼1 mm.

Fig. 10 shows that for a fixed value of hij=R, the contact force is
an increasing function of parameter m, as a consequence of
Eq. (1). For small values of m (m¼1.67 and lower values), all
three curves are similar, and for high values of m and large values
of hij=R, Storåkers’s model tends to greatly overestimate the
response whereas the high-density model still gives a good
approximation when compared with the MPFEM results. In any
case, the former model is correct for small displacements (zoom
in Fig. 10). These results are to be compared with those of
Mesarovic and Fleck [35], which also show that Storåkers’s model
is limited to an order of magnitude of about 0.1 for hij=R in the
case of two deformable spheres indenting each other. However,
their study is limited to hij=R about 0.2.

The lack of agreement between MPFEM and Storåkers’s theory
for large hij=R can be further understood by comparing the contact



Fig. 10. Force–displacement curves given by the three models (MPFEM, Storåkers’s theory and high-density model).

Fig. 11. Results of a simple compression test, for m¼1, m¼4.16 and m¼1.67,

according to MPFEM and Storåkers’s theory. (a) Contact area and (b) average

contact pressure (resulting force divided by contact area). a is the radius of the

contact area, corresponding to each model, and A is the contact area.
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area and pressure given by both methods, since these quantities
are predicted by the latter theory. Fig. 11a shows the evolution of
the contact area predicted by Storåkers’s model and MPFEM
simulations in the case of simple compression. The first model
predicts a higher contact area than the MPFEM for high values of
hij=R and m. MPFEM results show that the evolution of the contact
area between two spheres is nonlinear. The small jumps on the
MPFEM curves are caused by insufficient mesh refinement,
because the value of the contact area is highly influenced by the
size of the elements compared to the size of the contact area.

Fig. 11b shows the average pressure (normalized by s0) on the
contact surface. In this case Storåkers’s theory obviously disagrees
with MPFEM predictions. In particular, his model assumes that for
perfect plasticity (m-1), the contact pressure is independent of
the indentation depth hij=R and is equal to 3s0. MPFEM results, on
the contrary, show that the contact pressure decreases from about
3s0 towards s0. This effect clearly relies in the change in shape of
the sphere, which is not considered in Storåkers’s theory.

This underlines the fact that his assumption of small displace-
ments (such that contact surfaces remain small compared with
the size of the contacting bodies, see [43]) is not valid at this scale,
at least for high values of m. We do not know the amplitude of
relative displacement which has to be considered for high-density
compaction in the general case. However, it is possible to obtain
data from the example of our 32-sphere packing with an initial
relative density D¼0.48. By tracking the nodes of the finite
element mesh which initially correspond to the centers of the
particles, the indentation depths were measured. Two indicators
are taken: the average indentation depth hav=R and the maximum
indentation depth hmax=R. These results reveal that:
�
 For isotropic compaction:
At D¼0.98, hav=R¼ 0:28 and hmax=R¼ 0:59.
At D¼0.8, hav=R¼ 0:21 and hmax=R¼ 0:42.

�
 For die compaction:

At D¼0.98, hav=R¼ 0:33 and hmax=R¼ 1.
At D¼0.8, hav=R¼ 0:25 and hmax=R¼ 0:73.
With these values, Storåkers’s model does not appear reliable
for the modeling of the compaction of the 32-sphere assembly
even up to D¼0.8. On the other hand, the high-density model is
formulated to fit the data up to hij=R¼ 1 with Eq. (7). But before
concluding about this model, it is helpful to study the influence of
contact interactions on the contact force.
4.2. Contact interactions

It is not easy to obtain quantifiable data on contact interac-
tions. One possibility lies in the comparison between force–
displacement curves in simple compression and in other situa-
tions including confinement effects. The present section proposes
a comparison between color maps of stresses and strains inside
the grains – which indicate structural changes inside the grains –
and curves obtained through numerical tests on a simple cubic
structure as defined in Fig. 8.

Fig. 12 shows the contact areas (enlightened by a color map of
the contact pressure) on a sphere, chosen in the assembly, at six
different states along the compaction corresponding to overall
relative densities (D) of 0.55, 0.6, 0.7, 0.8, 0.9 and 0.98. The
deformed shapes give an illustration of the size of the contact



Fig. 12. Contact areas as the relative density increases.

Fig. 13. Evolution of equivalent plastic strain and mean pressure in a view cut of the 32-sphere assembly, predicted by the MPFEM, in the first part of the compaction.
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areas at different relative densities, and show that the contact
surfaces are impinging at D¼0.9.

Fig. 13 illustrates the evolution of the mean pressure and of
the equivalent plastic strain in a view cut of the whole 32-sphere
assembly. The equivalent plastic strain may be interpreted as an
indicator of the increasing resistance to deformation due to strain
hardening, and thus the interactions between the contacts are
visible when ‘‘bridges’’ of plastically deformed material appear on
the color map between contacts. The mean pressure is to be
linked with the material’s resistance to compression. Again, the
bridges of mean pressure illustrate the link between resistance to
compression and contact interactions.

In Fig. 13, the bridges begin to appear close to the compressing
walls at D¼0.6 (as an effect of friction), but they are visible on
most spheres at D¼0.7. In parallel, the evolution of the contact
force can be studied from simulations on the simple cubic cell.
Fig. 14 illustrates the influence of confinement in this very
specific case, for lead (m¼4.16). When compared with the simple
compression of a single sphere, the contact forces are identical
for low values of hij and becomes increasingly higher as loading
proceeds (Fig. 14a). Fig. 14b suggests that this increase in force is
directly related to rij such that rij ¼ 1 appears to be an asymptotic
value (because of plastic Von Mises incompressibility, if elastic
compressibility is neglected).

In Fig. 14a, the difference between isolated contacts (represented
by the MPFEM simple compression curve) and interacting contacts
(represented by the compaction of simple cubic cells) appears for
hij=RC0:18 (D¼0.695) for isotropic compaction and for hij=RC0:50
(D¼0.698) for die compaction. In addition, Fig. 13 suggests that
contact interactions are active at D¼0.7. This seems to indicate that
the limit between independent and interacting contacts should be
0.7 rather than 0.85 as commonly assumed.

However, in Fig. 14, the increase of the force caused by contact
interactions is balanced by the overestimation given by Storåkers’s
model. As a result, the model fits quite well the MPFEM curve of
the isotropic compaction up to rijC0:9 and hij=RC0:33, even
though it is already critical for hij=R¼ 0:2 when compared with the
simple compression MPFEM curve. For die compaction, similar
observations may be made, but the agreement between MPFEM
and Storåkers’s model is not satisfactory because the effect of
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incompressibility is very late for this specific loading, and the
displacement hij=R required to reach full density is nearly 1.

These results show that Storåkers’s model may not be appro-
priate to describe the local contact behavior for large strains
(hij=R40:1). However, the die compaction of the simple cubic
structure is not expected to be representative of what happens in
Fig. 14. Normalized contact force for m¼4.16 as a function of the indentation

depth (a) and of the relative density (b), for isotropic and die compaction of a

simple cubic structure (Fig. 8b,c).

Fig. 15. Evolution of equivalent plastic strain and mean pressure in a view cut of the
a random assembly of particles under a relatively simple loading.
In a random assembly, the contact forces are distributed around
the particles in a more equal manner, because of the number of
contacts and their random orientations. Moreover, efficient mod-
els based on Storåkers’s equations proved their efficiency up to a
relative density of 0.85. It may just be noticed that this limit of
0.85 is due to the overestimation of the contact forces given by
these equations for large displacements. Storåkers’s model thus
leads to valuable predictions for the average stresses at the
macroscopic scale, but not for the local contact forces, as Fig. 7
shows. As a result, it should be used cautiously when looking at
local heterogeneities, such as density distribution. However, the
high-density model reproduces the contact forces in such parti-
cular cases, by relating the increase of the force to the local solid
fraction.

In addition, there is a smooth transition between the assembly
with independent contacts (loose powder) and dense material
(compacted state), during which strain-hardening caused by
contact interactions and resistance to compressibility gradually
increase. We believe that this justifies the formulation of the high-
density model with a gradually increasing term, modeled here as
the second term S2 (Eq. (8)).

4.3. High density behavior

From the preceding results, high-density phenomena result in
an asymptotic behavior where rij ¼ 1 is a limit for the indenta-
tion, the contact force becoming infinite. In Eq. (8), the force
caused by the increase of the local solid fraction only depends, as
a result of Eq. (4), on the local solid fraction of the contacting
spheres. Except when huge differences exist in the local solid
fraction of neighboring spheres, the incompressibility force is
distributed in an approximately equal manner to all the contacts
around the sphere. This assumes the homogeneity of this con-
tribution; and MPFEM can give some indications on this point.

Fig. 15 is similar to Fig. 13, but for the next part of the
compaction, up to D¼0.98. These pictures show that the mean
pressure tends to become quite homogeneous, except in the
neighborhood of the remaining pores and in the corners, where
the material is trapped between the compressing walls. In the
corners, the mean pressure is really high. This is the result of an
edge effect, which is quite significant because of our simplified
sample with only 32 particles and no periodic boundary
conditions. The homogeneity of the pressure encourages us to
consider that for most spheres the resistance to compressibility
can be distributed in an approximately equal manner to all the
32-sphere assembly, predicted by the MPFEM, in the last part of the compaction.
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contacts around a sphere. Exceptions exist, as can be seen
on the left-hand bottom corner, where one of the spheres’
halves is much more compressed than the other. In this
situation, with our present discrete element model, such a
sphere would be moved a bit closer to the corner, because of
the formulation of Eq. (8).

On the contrary, equivalent plastic strain is concentrated near
the walls, as a well-known effect of friction. Inside the grains, the
material is more deformed in the vicinity of the contacts, such
that the distribution of strain is not homogeneous at all. Such
complex phenomena are not considered in the high-density
model, and their effects on the contact forces are included in a
very coarse way in the indentation term (7) as a result of a fitting
procedure on finite element results [23].
5. Concluding remarks

The description of the normal contact force for DEM model-
ing of high density compaction is tractable if a local solid
fraction providing a correct description of contact interactions
and plastic incompressibility of the constitutive material of the
grains is used. The high-density model thus seems to predict
the normal contact force at the contact scale with a reasonable
accuracy. Furthermore, results show that a correct description
of the contact forces leads to a valuable prediction of macro-
scopic stresses. As a result, it was also possible to obtain
valuable predictions of the macroscopic wall stresses on a 32-
sphere random assembly under isotropic and die compaction
up to a relative density of 0.95. The present model requires only
physical constants, as input parameters, linked to the consti-
tutive material of the grains.

By completing the present contact model with cohesion and
choosing an appropriate yield criterion, it would be useful to
derive yield surfaces as suggested by Martin [32]. However, the
complete modeling of high-density compaction with the DEM
requires further investigation, as the kinematics of the particles
may not be properly described by the present model. The
contribution of ‘‘new’’ contacts appearing during compaction,
discussed in Harthong et al. [23] (and already in [15]) is expected
to be negligible in most cases, but the kinematics are closely
linked to the modeling of friction and resistance to rotations.
Iwashita and Oda [26], Plassiard et al. [37] modified the usual
DEM to introduce resistance to rotation at the contact level.
Martin et al. [34] consider that rotations can be simply neglected.
Here we suspect that since our sample has a low initial relative
density (D0¼0.48, to be compared with 0.64 in [34]), the rotations
could have a non-negligible influence on rearrangement between
0.48 and 0.64. Such points have to be considered to obtain
comparable results with both methods, in order to describe
properly the density or stress distribution.
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[37] Plassiard JP, Belheine N, Donzé F. A spherical discrete element model:
calibration procedure and incremental response. Granular Matter 2009;11–5:
293–306.

[38] Procopio AT, Zavaliangos A. Simulation of multi-axial compaction of granular
media from loose to high relative densities. J Mech Phys Solids 2005;53:
1523–51.

[39] Schmidt I, Kraft T, Riedel H. Numerical homogenisation of elasto-plastic
granule assemblies using discretised particles. In: Proceedings of the Euro
PM2008. European Powder Metallurgy Association; 2008. p. 169–73.

[40] Sinka IC, Cocks ACF. Constitutive modelling of powder compaction—ii.
Evaluation of material data. Mech Mater 2007;39:404–16.

[41] Skrinjar O, Larsson P-L. On discrete element modelling of compaction of
powders with size ratio. Comput Mater Sci 2004;31:131–46.

[42] Sridhar I, Fleck NA. The yield behaviour of cold compacted composite
powders. Acta Mater 2000;48:3341–52.



B. Harthong et al. / International Journal of Mechanical Sciences 61 (2012) 32–43 43
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