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Abstract

With the lattice element method, it is required to introduce a length via, for example, a non-local

approach in order to satisfy the objectivity of the mechanical response. In spite of this, the mesoscale

structuring of inclusions within a matrix conveys the natural origin of the internal length for a fixed mesh.

In other words, internal length is not explicitly provided to the model, but rather governed by the

characteristics of the meso-structure itself. This study examines the influence that the meso-structure

of quasi-brittle materials, like concretes, have on the width of the fracture process zone and thus the

fracture energy. The size of the fracture process zone is assumed to correlate with a microstructural

dimension of the quasi-brittle material. If a weakness is introduced by a notch, the involvement of the

ligament size (a structural parameter) is also investigated. These analyses provide recommendations and

warnings that could be beneficial when extracting, from material meso-structures, a required internal

length for nonlocal damage models. Among the observations made, the study suggests that the property

that best characterise a meso-structure length would be the spacing between inclusions rather than the

size of the inclusions themselves. It is also shown that microstructural dimension and the width of the

fracture process zone have comparable order of magnitude, and they trend similarly with respect to

microstructural sizes such as the inclusion interdistances.
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Introduction

Objective modelling of structural failures requires the introduction of an internal length in the

constitutive model. This solution rises the practical question of the identification of such a length

for engineering uses. Fracture of quasi-brittle materials is characterised by a zone with a finite size

around and ahead of the crack tip, in which non coalescent microcraks occur and cause the soft-

ening behaviour of materials. This is the fracture process zone (FPZ). For instance, in concretes, the

size (width) of the FPZ, denoted by ‘FPZ hereafter, is believed to be proportional to the maximum

aggregate size dmax; see, e.g., Ba�zant and Oh (1983) or Pijaudier-Cabot and Ba�zant (1987).

Therefore, in nonlocal models – gradient or integral form (Giry et al., 2011; Peerlings et al.,

1996; Pijaudier-Cabot and Ba�zant, 1987) – the FPZ size which only depends on the internal

length ‘c introduced as a model parameter, depends on (is proportional to) the maximum aggregate

size. Accordingly, neither loading nor structural effect is considered to affect the resulting size of the

FPZ except in the latest integral nonlocal model proposed in Giry et al. (2011). In the latter, the

internal length parameter evolves depending on the stress state during the damage process and also

depends on the intrinsic (characteristic) length that can be correlated with aggregate size of the

material. However, the correlation between the characteristic length and the aggregate size has not

been explicitly calibrated yet. Up to the best author knowledge, this is also true for any approach,

the internal length is at best calibrated with respect to experimental results by means of inverse

analysis which requires a great experimental effort. Moreover, since the FPZ size depends on the

shape of the stress field, the calibration is valid only on a specific test and should not be used for

another geometry and/or loading. For those reasons, it is crucial to make a step forward to better

understand the role of inclusions in the FPZ development.
The literature often reports a linear or affine relation between ‘c and dmax; see, e.g., Otsuka and

Date (2000) or Ba�zant and Pijaudier-Cabot (1989), with limited justification and a short variability

range due to the cost of experimental tests and also to the instabilities of concrete mix while

exploring a wide range of aggregate properties. Indeed, varying dmax in real materials may lead

to a number of changes in the aggregate structure characterised by other parameters such as the

volume fraction of aggregate, their size distribution, their fabric, their connectivity or, possibly more

critically, the distance between them. Basic questions may be raised: what depends on the internal

length choice of nonlocal models? Is it only the maximum size of aggregates or some less obvious

parameter(s)? Does the structure itself (size or ligament) play a role in the right choice of internal

length?
To address these questions, numerical simulations of uniaxial tensile tests are carried out using

the lattice model in which the geometry and mechanical properties of the material mesostructure are

explicitly introduced. The assessed data of the simulations is the FPZ size and the characteristic

length of the material. The characteristic length is a priori correlated to the internal length that

would be introduced in nonlocal models. For this reason, these two quantities, although quite

different, are used here interchangeably under the notation ‘c. In other words, these two lengths

are assumed to be correlated in this study. Based on lattice simulations, the relationship between the

two lengths, ‘FPZ and ‘c, and some relevant characteristics of the material mesostructure can be

revealed. The study is restricted to the case of two-dimensional analysis of a brittle elastic model

material with circular inclusions. It is also restricted to mode-I failure problems occurring with small

deformations under quasi-static loading conditions. It is important to insist here on the fact that, in

the present study, the purpose is to examine the numerical influence of the circular inclusions of a

virtual mesostructure of a quasi-brittle material.
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The lattice model used in our study is briefly recalled. The model is implemented in our in-house
code using Cþþ programming language. The method to assess the FPZ size and the characteristic
length of the material will be next pointed out before performing numerous numerical experiments
to study the influence of the material mesostructure and of the structural parameter (ligament size)
on these lengths.

Numerical model

The lattice element method (LEM) is a convenient way to model the fracturing of quasi-brittle
materials for the problems in which the discontinuities are dominant since it provides a discrete
representation of material disorder and failure. By using the LEM, the micro-cracking, crack
branching, crack tortuosity and bridging of quasi-brittle materials can easily be identified and
captured. It allows the fracture process to be followed until complete failure. There exist two
different types of lattice models. The first one is called classical lattice models in which the material
is discretized as a network of discrete 1D-elements that can transfer forces and possibly moments
(Schlangen, 1993; Schlangen and van Mier, 1992a, 1992b; van Mier and Vervuurt, 1995). The
second type of lattice models, called particle lattice models, are classified as a discrete element
method (Kikuchi et al., 1992) in which the material is discretised as an assemblage of rigid particles
interconnected along their boundaries through normal and shear springs (Kawai, 1978). The models
in this category also include the rigid-body-spring networks (Bolander Jr et al., 2000), bonded-
particle model (Potyondy et al., 1996), random particle models (Ba�zant et al., 1990), beam-particle
model (D’Addetta et al., 2002; Delaplace, 2005), confinement-shear lattice model (Cusatis et al.,
2003). The main benefit of particle lattice models with respect to classical lattice models is that they
account for the fact that crack surfaces may act on each other causing the repulsive force during the
loading process. So the particle lattice models are more suitable for predicting the failure behaviour
in mode-II or mode-I under cyclic loadings whereas the classical ones are enough when the mode-I
failure prevails.

In this work, only the mode-I failure of the material submitted to monotonic mechanical loadings
is considered. Moreover, for studying the influence of the material mesostructure on the FPZ which
is related to the characteristic length of the material, a detailed description of tortuous crack
patterns is important. Therefore, a lattice model was designed by introducing normal and shear
breakable springs. In this model, the post-peak mechanical response may be judged too fragile
compared to that of concrete. This is an opportunity to recall that the virtual material of this
study is not concrete but rather a quasi-brittle material.

The constitutive laws of the 1D-elements are simple elastic relations in the normal and tangential
directions defined by each element, see Figure 1(a). Only small perturbations are considered, the
positions of the lattice nodes are assumed fixed and unknown variables are the node displacements

Figure 1. 1D-element with its local coordinate system (a) and its effective width Aij (b).
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~u. The axial direction ~n ij
0 and tangent direction~t

ij
0 associated with each element ij remain thus fixed.

Relative displacements between the nodes i and j are defined by d ij
n ¼ ð~ui �~ujÞ �~n ij

0 and d ij
t ¼ ð~ui �

~ujÞ �~t ij0 for the normal and tangential directions, respectively. The forces are related to these relative
displacements by fijn ¼ Kij

nd
ij
n and fijt ¼ Kij

t d
ij
t , where K

ij
n and Kij

t are the normal and shear stiffnesses of
the element, respectively.

The approach consists in finding the set of node displacements ½~u � – among which some are
imposed along the boundaries – that minimise the total elastic energy of the system:

Ueð½~u �Þ ¼ 1

2

X
ij

Kij
nðdijnÞ2 þ Kij

t ðdijt Þ2
n o

(1)

To proceed this minimisation, the conjugate gradient method is used with the following defini-
tion of the gradient:

@Ue

@uai
¼ �~ea �

X
j j i2ij

Kij
nd

ij
n~n

ij
0 þ Kij

t d
ij
t
~t
ij
0

n o
(2)

where ~ea stands for the two directions of the global frame.
The damage (in the form of diffuse or macroscopic cracks) of the whole lattice system is

accounted for by removing each element that breaks according to a criterion wðfijn; fijt Þ � 0. The
Mohr-Coulomb surface with a cut-off of the tensile strength (Bolander Jr and Saito, 1998) can be
adopted. However, we chose to use another model that has the advantage of being more generic
while it is expressed in a single function:

wðfijn; fijt Þ ¼
fijn

AijrYn
þ fijt

AijrYt

 !n

� 1 (3)

where rYn and rYt are the ultimate stresses for pure normal and tangential loadings, respectively; n is
a positive parameter that changes the yield surface from a linear form (n¼ 1) – corresponding to the
classical Mohr-Coulomb criterion – to a non-linear form (n> 1). In this study, n¼ 5 is used, which
make the ultimate stresses rYn and rYt less related.

Let us now consider a system of lattice elements where small displacements are imposed for some
nodes on the boundary. A reference solution ½~uref�, corresponding to the free displacements of the
nodes, can be found by minimising Ue as described above. Provided that the elements remain elastic
and intact, any other elastic state is an homothetic scaling of the reference solution: ½~u � ¼ g½~uref�. As
a consequence, elastic forces can be scaled by the same factor and it becomes possible to find, for
each element, a factor gij so that wðgijfn; gijftÞ ¼ 0. The state corresponding to the failure of
the weakest element can thus be obtained by scaling the reference solution by the factor gmin that
is the minimum value of gij for all elements, and then recorded. The next loading state will
result from another reference solution beginning from a new configuration in which the
broken element is removed. By repeating this procedure for each element failure, one by one, the
loading course is controlled by these events rather than a time-stepping which could involve more
than one element removal within a single time step. This would results in non-physical solutions that
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make the mechanical response dependent on the loading magnitude (Delaplace and Desmorat,
2007).

With the LEM, heterogeneities appear de facto at the mesh level. The required disorder in the
mesh, introduces a variation in lengths ‘ij and effective width Aij of the elements. It results in an
undesired parasitic heterogeneity in the stiffness properties that can be limited by accounting for the
local geometry in the element behaviour:

Kij
n ¼

Aij

‘ij
�K
u
n and Kij

t ¼
Aij

‘ij
�K
u
t (4)

where �K
u
n and �K

u
t are the stiffnesses that can be “uniformly” applied to each phase u (e.g., aggregate

or matrix). The effective width Aij is defined as the distance between centroids Cijk and Cijm of the
triangles adjacent to the element ij, projected onto the local direction~t

ij
0 as proposed in Cusatis et al.

(2006); see Figure 1(b). Since the model is bi-dimensional, it is convenient in order to refer to usual
physical quantities, to regard the quantity Aij as a surface by assuming an unit length in out-of-plane
direction. In this picture, �K

u
n and �K

u
t have a dimension of a material stiffness. As a consequence of

the weighting of imposed stiffnesses �K
u
n and �K

u
n in a phase, actual stiffnesses of elements differ from

each other, while the apparent elastic module is homogenised.
The targeted Young’s modulus Eu and Poisson’s ratio �u of the phase u can be used to determine

the element stiffnesses by the following relations:

�K
u
n ¼ Eu

1� �u
and �K

u
t ¼ Euð1� 3�uÞ

1� ð�uÞ2 (5)

These relations are derived from the equations given in Chang et al. (2002) for a regular and
triangular lattice, by replacing a factor

ffiffiffi
3

p
by 1 (found empirically from a number of single-phase

simulations).
From there, the heterogeneity intrinsic to the mesh geometry is limited as much as possible, and a

structure of inclusions (grains) can be generated using the take-and-place processes (H€afner et al.,
2006; Wang et al., 1999). After generating the inclusion structure, different material phases are
defined and different local mechanical properties are assigned to the elements falling in each phase.
At the mesoscale, three phases can be distinguished: inclusion, matrix and interfacial transition zone
(ITZ), see Figure 2. If both ends of an element are located in the same phase, then this element is
assigned the same mechanical properties of the corresponding phase (inclusion or matrix), otherwise
it is considered as interface or inclusion element depending on the location of its midpoint. If its
midpoint is located within the grain, the element is classified as inclusion element, otherwise it will
be ranked as ITZ element. The reason for this definition of ITZ element is that the resulting fraction
of inclusions (the ratio between the number of inclusion elements and the total number of elements)
is closer to desired fraction of inclusions in material than those developed by other authors (Lilliu
and van Mier, 2003; Sagar and Prasad, 2009; Schlangen and van Mier, 1992a). In their models, all
elements that connect two different zones of grain structures are considered as ITZ elements. The
counterpart of our choice requires that the distribution of ITZ elements, seen as weak points where
cracks are prone to initiate and propagate, be correctly distributed around each inclusion. In prac-
tice, if the number of elements is sufficiently large (more than about 5 elements per diameter), this
condition will be met.

Bui et al. 5



Assessment of characteristic length

To account for damage in continuous (and homogenised) modelling of concrete, a length param-
eters is required (Peerlings et al., 1996; Pijaudier-Cabot and Ba�zant, 1987). This length, denoted by
‘c, called characteristic length is seen as an intrinsic property of the material. However it is not so
simple to determine and to connect with the heterogeneities at lower scales. The method proposed in
Ba�zant and Pijaudier-Cabot (1989) is used here to assess this characteristic length for a material
modelled by lattice elements. The basic idea is that the characteristic length of the material is
approximated by the effective width h of the zone in which the fracture energy of the material is
dissipated. This effective width is defined as the ratio of the fracture energy Gf (energy per unit area
of crack surface) dissipated by the cracking that localises in a narrow band of the specimen in a
localised tensile test and the energy density Ws dissipated by the cracking that is nearly homoge-
neously distributed in the whole volume of the specimen of the same material in a distributed tensile
test. Finally, the characteristic length is approximated by h which can be assessed by

‘c / h ¼ Gf

Ws
(6)

The symbol / which normally denotes a proportionality, has to be interpreted as a coordinated
evolution of the two values (when h rises or falls, so does ‘c). It needs to be stressed at this point that
the exact meaning of ‘c in this study is left unfocused by assuming that the characteristic length
derived from mesoscopic properties is correlated to an internal length that would be used in any
non-local model. To assess the trends of ‘c with LEM simulations, both numerical tensile tests
(localised and distributed) have to be performed to determine Gf and Ws. Gf is determined from the
tensile test performed on a notched specimen so that the damage can be localised. Whereas Ws has
to be determined from the tensile test carried out on a non-notched specimen with specific design of
loading such that the damage is distributed as homogeneously as possible in the specimen volume.
To this end, the numerical simulations of tensile tests using the lattice model can be performed in
which the tensile loading is indirectly applied to the notched and non-notched specimens by elon-
gating the steel bars “glued” to the specimens as proposed in Ba�zant and Pijaudier-Cabot (1989), see
Figure 3. These two tests were carried out on numerical specimens of the same size. The loading is
applied by means of lateral bars that are “glued” to the specimen and set 10 times stiffer than the

Figure 2. Distinction between inclusion, matrix and ITZ phases according to the location of a lattice element in the
grain structure.
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material tested in order to impose a nearly constant strain along the boundaries. The main differ-
ence between the two types of tensile tests is that the steel bars are only glued to the ends of the
notched specimen within a certain length whereas they are entirely glued to the non-notched speci-
men within the whole height of the specimen. For the following, the tensile tests performed on
notched specimens, where the Location of Damage is forced, are referred to as LD-tests. The tensile
tests performed on non-notched specimens, designed to identify Distributed Damage, are mentioned
as the DD-tests. These tests are known as the PIED (French acronym “Pour Identifier
l’Endommagement Diffus” meaning “For Identifying Diffuse Damage”) tests in the French com-
munity, as introduced in Fokwa’s PhD thesis (Fokwa, 1992). Note however that a diffuse damage is
actually not achievable, that is why we prefer to talk about distributed rather than diffuse damage. In
the lattice simulations, the steel bars with the width of 2mm are also discretised in 2D by the lattice
elements (2D mesh) but their stiffnesses are set 10 times greater than those of the material tested and
they always have an elastic behaviour. The steel bars are perfectly “glued” to the specimens via
compatible nodes over a long enough length in order to facilitate the homogeneity of the deforma-
tions. This explains why the original designers of these tests have used such elongated specimens.

In LD-tests (Figure 3(a)), a crack is initiated and then propagates until the specimen breaks. The
fracture energy Gf is simply the sum of all elastic energy dissipated by the rupture of broken
elements ij 2 Sbrk divided by the total cracking surface Abrk:

Gf ¼ 1

2Abrk

X
ij2Sbrk

A2
ij

r2Yn
Kij

n

þ r2Yt
Kij

t

 !
(7)

Figure 3. Sketch of the specimens used to determine the characteristic length as proposed by Ba�zant and Pijaudier-
Cabot (1989). The tensile test performed on the notched specimen to obtain the localised cracking process (a) and
on the non-notched specimen to obtain a distributed cracking process (b).
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where

Abrk ¼
X
ij2Sbrk

Aij

The DD-tests (Figure 3(b)) aims to avoid any onset of crack so that the straining and damage are

as uniform as possible. The energy density Ws is thus given by the total elastic energy dissipated

within the specimen surface S:

Ws ¼ 1

2S

X
ij2Sbrk

A2
ij

r2Yn
Kij

n

þ r2Yt
Kij

t

 !
(8)

Direct measurement of the effective width h of the fracture process zone (FPZ), denoted by ‘FPZ
for the following, is another possibility to estimate this characteristic dimension. We also made this

estimation from single tensile tests performed on notched specimen, by treating the fracture energy

of each element similarly to acoustic emission (Haidar et al., 2005; Maji and Shah, 1988).

A density map of the released elastic energy quantums (each term under the sum of equations (7)

or (8)) can be drawn from broken elements. Based on this map, the size of the FPZ can be deter-

mined by analysing the density distribution of dissipated energy around the macrocrack. This

distribution, when represented as a probability density function (pdf), can be fitted by a

Gaussian distribution in order to extract a width. Rather than that, we choose to rely on the

cumulative density function (cdf) of the dissipated energy to determine the size of the FPZ since

that curve can be more smoothly defined by sorting the dissipated energy along a direction. The

direction chosen here is the one perpendicular to the mean direction of the final crack which may

not be strictly perpendicular to the loading direction depending on the microstructure setting.

A fit of the cumulated form by the integrated form of a “Gaussian bell” allows to assess ‘FPZ as

being four times larger than the standard deviation r of the Gaussian curve. This choice corre-

sponds to a width containing a bit more than 95% of energy dissipated (provided that only one

process zone exists).
It is worth pointing out that the FPZ size and the characteristic length of the material determined

by lattice simulations also result from the mesh size, i.e., the lattice element size. This means that the

LEM introduces a characteristic length by its mesh. An analysis of the mesh-size influence on the

FPZ size is performed. A series of LD tensile tests is performed in which the specimen is discretised

with five different mean values of the mesh size lm. Furthermore, for each discretisation, five inde-

pendent meshes are generated by randomly moving the nodes within the radius of �lmin (the mini-

mum mesh size) to take into consideration mesh orientation effect on ‘FPZ. The dependence of the

FPZ size on the mesh size is shown in Figure 4 for a tensile test. As expected, the FPZ size tends

statistically towards zero-width upon mesh refinement. Note however that the intercept of the affine

fit is not exactly zero, its value is 0.18mm. This is probably due to the fact that there are only five

discretisations were used and there was not any mesh finer than 1mm to be generated for the sake of

saving computational time. Once the influence of the mesh on the material internal length is known,

it can be subtracted from the relationship between the internal length and the inclusion properties.

The latter defines the aim of the present study.
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Numerical experiments

To study the role played by coarse inclusions in the internal length, numerous simulations have been
performed. In the modelling of the material mesostructure, inclusions are considered, which are
embedded in the matrix separated by the interfacial transition zones (ITZ). The inclusions, matrix
and ITZs are assumed to be linear brittle elastic. The inclusions are also assumed to be stiffer and
more resistant than the matrix, whereas the ITZs are assumed to be less stiff and with a smaller
strength than the matrix. In the following simulations, the stiffness and the strength of inclusions
are 10 times larger than those of the matrix. In turn, the stiffness and the strength of the matrix is
twice larger than those of ITZs. Elastic and strength parameters of the matrix are set to values listed
in Table 1, and they are kept fixed for all simulations. All these choices are arbitrary.

The way coarse inclusions are structured – referred to as “grain structure” in the sequel – was
restricted to two characteristics in this study: the mono-sized grain diameters d and their surface
fraction Pa. In the (Pa $ d) parameter space, shown in Figure 5, three variation paths were
considered:

➊ varying d while the positions of inclusions remain the same, Pa thus varies roughly like d2,
➋ varying d while Pa is kept in the range from 30% to 40%,1

➌ varying Pa for a given inclusion diameter d¼ 8mm.
In addition to the variation of grain structure, the effect of a weak interfacial transition zone

between inclusion and matrix phases (3u) is also analysed. Without the weak ITZs, only two phases

Table 1. Elastic and strength parameters used in the bulk of the matrix phase. Corresponding Young’s modulus and
Poisson’s ratio at the macroscopic level are also indicated.

�Kn
�Kt rY ​ n rY ​ t E �

Phase u (GPa) (GPa) (MPa) (MPa) (GPa) (–)

Matrix 16.50 5.10 6.07 18.21 13.20 0.20

Figure 4. Evaluation of the FPZ size (4 standard deviations of statistical distribution of energy releases on either side
of the average crack path) with respect to mesh size: the FPZ size ‘FPZ does statistically vanish under mesh
refinement.
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(2u) are modelled in the sense that the properties of the ITZs as schematically shown in Figure 2 are

those of the matrix.
Typical force-displacement and stress-strain curves obtained for the LD and DD tests, respec-

tively, are shown in Figure 6. The corresponding crack patterns are also presented. It is seen that

there is only one macro crack which crosses the notched specimen of the LD test instead of fifteen

macro cracks for the non-notched specimen of the DD test. It shows that the numerical results

exhibit disrupted evolution due to the event-driven flow of the simulation. This differs from the

experiments in which the displacement is controlled. In fact, the latter is characterised by a mono-

tonic increase of the displacement. Therefore, in order to have a corresponding response, the

“envelope” of the numerical curve should be taken for visual purposes only. The envelope curve

is obtained by the so-called smoothing procedure. The procedure is described as follows. By con-

necting from the first to the last point that describes the specimen state and as soon as a decrease of

the displacement is observed, the decrease of the computed load is kept vertically until an intersec-

tion with the original curve is observed. The envelope curve then follows the original curve until the

new decrease of the displacement is met again and the procedure is repeated. The zoom-in figure in

Figure 6(a) shows the procedure. Note that envelope curves were also proposed in Arslan et al.

(1995) and Vervuurt (1997). However, when using the envelope curve alone, some essential infor-

mation may be lost such as a possible snap-back. Also the area under the envelope curve is over-

estimated. So, the values of Gf and Ws should not be taken from the corresponding areas under the

envelopes of the force-displacement and stress-strain curves. Instead, Gf and Ws are directly com-

puted from the released elastic energies of the broken elements by equations (7) and (8). It should be

noted that these expressions differ not only in their normalisation (crack length or surface) but also

in the test (LD or DD) to which they apply. Remark, that a determination of Gf and Ws from the

global response curves is obviously possible, but it should be too dependent on the path between

consecutive force-displacement points which is not explicitly known and also strongly affected by

the mesh size.
In all tests presented herein, the characteristic length ‘0c intrinsic to the lattice mesh is determined

by performing the LD and DD tests on several mesh configurations without inclusions.

Figure 5. Three variation paths➊,➋ and➌ for three-phase material (3u) and the variation path➊ for two-phase
material (2u) in the (Pa $ d) parameter space for the monodisperse distribution of inclusions.

10 International Journal of Damage Mechanics 0(0)



The intrinsic effective width of the FPZ ‘0FPZ is also determined via direct measurements. These

values are shown in the plots of lengths as if the inclusion diameter or the surface fraction is zero.

Key features that may influence the FPZ size

Material mesostructure. Path ➊ – For concrete materials, it is usual to deem that the characteristic

length depends on the aggregate size. Initial investigations with the model have therefore focused on

the role of the inclusion diameter d on the width ‘FPZ of the FPZ, while varying d and keeping the

positions and the number of inclusions unchanged (variation path ➊). The evolution of the FPZ

size ‘FPZ with respect to the size of the inclusions d is shown in Figure 7. In this plot and those that

(b)

(d)(c)

(a)

Figure 6. Force-displacement curve (a) and the corresponding crack pattern (b) of the localised tensile test on the
notched specimen regarded as a structure; the inset is a zoom on the enveloppe curve. In terms of stress and strain,
the pic is reached at 1.75 MPa and 0.04%, respectively. Stress-strain curve (c) and the crack pattern (d) of the
distributed tensile test on the non-notched specimen regarded as a representative volume element of the quasi-fragile
material. For this illustrative exemple, the diameter of all inclusions is d¼ 6 mm, and the surface fraction is Pa ’ 35%.
The mean length of lattice elements is �1 mm and the mesh width of the ITZ is thus of the same order.

Bui et al. 11



follow, each point with its error bar (standard deviation) requires five measurements and corre-

sponds to the mean value of five values of ‘FPZ with five independently random distributions of the
position of inclusions in the specimen. The lattice mesh used in the single-phase simulations pro-

vides a width of the FPZ equals to 2.1mm. It corresponds to the pink circular symbol in several

plots, and is labelled “Homo” for “homogeneous”, i.e., without inclusions. Besides, the best fits of
the variation of the mean value of ‘FPZ with respect to the inclusion size d for the two- and three-

phase materials are shown in the figure as well. It is noted that these fits are calculated only from the
mean values of ‘FPZ in the cases with inclusions. Thus, the value of ‘FPZ of the homogeneous

material is not taken into consideration in the fits. Also, the displayed fitted lines do not necessary

mean that an affine relation is enlightened. It must rather be seen as a tendency since the data
presents significant variations. As a consequence, the intersection of the fitted line with the vertical

axis has no particular meaning, i.e., one could also say the fit is only valid between the studied
limits.

The main observation from the Figure 7 is that when the inclusions are introduced, they have a

strong effect on the FPZ size in both two- and three-phase materials. First, the mean values of ‘FPZ
in the case of heterogeneous material are greater then the value of ‘FPZ in the case of homogeneous

one. Second, in the case with inclusions, the fitted slope of the mean values of ‘FPZ of the three-

phase material is greater than that of the two-phase material. This means that when the ITZ is taken
into account, the inclusion size plays a stronger effect on the variation of ‘FPZ than the case in which

the ITZ is not taken into consideration. So, according to our model, the internal length does not
only depend on the size of the inclusions but also their constituents and therefore the presence of

ITZ. The second observation is probably explained by the increase of the ITZ fraction when

increasing the inclusion size of the three-phase material, see Figure 8. Here, the ITZ plays a role
of attractive zones for the crack propagation because of their lower strengths. Accordingly, the

greater fraction of the ITZ results in the larger mean value of ‘FPZ compared to the mean value of
‘FPZ of the two-phase material (in which the ITZ fraction is zero). In the case of d¼ 4mm, the mean

value of ‘FPZ of the three-phase material does not differ from that of the two-phase one. This is

related to the fact that the matrix prevails in the mesostructure in the case of d¼ 4mm, as shown in
Figure 8, and thus few inclusions are found on the crack path. For the same reason, ‘FPZ of the

homogenised case is found at d¼ 4mm. It can be deduced that d is not proportional to ‘FPZ (as
found in the literature based on experimental results), there is a cut-off value for the inclusion

Figure 7. Affine relationship between the width of FPZ ‘FPZ and the diameter d of the inclusions, with (3u) or
without (2u) weak interfacial transition zone between inclusions and matrix is observed using the variation path ➊.
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diameter below which inclusions have no effect since they are not statistically met along the
crack path.

Furthermore, bigger values of the standard deviations are observed when increasing the particle
size of the three-phase material as well as of the two-phase one even though this is less obvious to
observe in the two-phase material than in the three-phase one. We believe that increasing the
inclusion size results in the increase of the inclusion fraction and as a result, the spatial distribution
of inclusions plays a stronger role in the resulting value of ‘FPZ. In two-phase material, by com-
parison between d¼ 8mm and d¼ 10mm, the standard deviation of ‘FPZ does not significantly
change. This is due to the fact that from d¼ 8mm, the inclusions get dense in the mesostructure of
the material, in that a change of the position of the inclusions does not have a strong effect on the
value of ‘FPZ. However, in three-phase material, the spatial distribution of inclusions still make
sense on the variation of ‘FPZ even though the inclusions get dense. This is reflected by the greater
value of the standard deviation of ‘FPZ in the case of d¼ 10mm than that in the case of d¼ 8mm, of
the three-phase material. There is no doubt that this is due to the effect of the ITZ.

Path ➋ – A second series of tests is performed by following the variation path ➋, that is with
fixed surface fraction of inclusions and varied inclusion diameter. The reason of this choice relies on
the fact that the fundamental role of inclusion size d must be checked while keeping other param-
eters unchanged to suppress their possible effect.

Figure 9 shows the plot of the mean value of the FPZ size ‘FPZ with respect to the size d of
inclusions of the path ➋ of variation. For the sake of comparison, the same plot of the path ➊ (3u)
is shown as well. Surprisingly, it exhibits that the mean value of the FPZ size does not depend on the
inclusion size for the path ➋ of variation. This original result means that the FPZ size developed in
this type of model material (brittle elastic) may not always be related to the inclusion size itself as
usually observed in the literature. The observation is in agreement with that of Skar _zy�nski et al.
(2011), in which the width of the FPZ was experimentally measured on the surface of concrete
specimens using a Digital Image Correlation (DIC) technique. However, it is in contrast to the
results of Mihashi and Nomura (1996) and Otsuka and Date (2000) for concrete material, in which
the experiments were carried out with x-rays and three-dimensional Acoustic Emission techniques
leading to the conclusion that the width of the FPZ increases with the increase of the maximum
inclusion size. But for the path ➊ of variation, as previously shown, it is observed that the mean
values of ‘FPZ increases with the increase of inclusion size d that also results in the increase of the
inclusion surface fraction.

Figure 8. Evaluation of surface fraction of each phase.
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Figure 10 shows the crack patterns and the corresponding value of ‘FPZ obtained when changing
the inclusion size d within the variation path ➋. The figure shows for each inclusion size d only one
random distribution of inclusions in the specimen. It seems that the position of inclusions around
the notches have an essential role on the resulting FPZ size. In fact, the crack is always initiated at
the weak ITZ between the inclusion and matrix phases. With regard to the position of a notch – that
can also be seen as a “weak link” – the crack is then propagated via the development of microcracks,
and at the end, the macrocrack is formed by connecting the notch(es) and the broken elements
(mainly in the ITZs). However, sometimes an inclusion is found just in front of the notch(es) and it
plays a role of an obstacle that prevents the rupture of elements in the vicinity of the notch(es) and
consequently, prevents the macrocrack to reach the notch(es). In this case, the macrocrack is finally
formed by mainly connecting the broken ITZ elements. Therefore, the spatial distribution (posi-
tions) of the inclusions actually have an important role on the FPZ size in conjunction with the size
of the inclusions. Nevertheless, for the case in which the reference surface fraction of inclusion is
kept almost constant (path➋), the spacing between the inclusions appears to be constant regardless
of the size of the particles, and thus the spatial distribution of the particles prevails more and more
on their size in the resulting FPZ size ‘FPZ. Actually, as shown in Figure 11 in which four different

Figure 9. Relation between the FPZ size ‘FPZ and inclusion size d with respect to the variation paths➊ and➋ (3u).

(a) (b) (c) (d)

Figure 10. Crack patterns and the corresponding FPZ size ‘FPZ [mm] of the LD tensile tests on the specimen made of
the material with different inclusion constant-size d [mm] of the variation path ➋ (Pa ranging from 30% to 40%). Blue
and black points are the broken elements: black for wide-open macro-cracks and blue for barely-open micro-craks. The
sample dimensions are shown in Figure 3a. The mean number of elements per macro crack is in the order of 80.

14 International Journal of Damage Mechanics 0(0)



sets of inclusion positions with the diameter being 6mm, the values of ‘FPZ are finally different

depending on the spatial distribution of the inclusions with regard to the notch position. This

explains why changing the size of the inclusions according to the path ➋ does not change the

value of ‘FPZ averaged over five random spatial distributions of inclusions. On the contrary, within

the path ➊ of variation, changing the inclusion size leads to a change in the inclusion surface

fraction together with the available space between inclusions, and the FPZ size is affected by not

only the size of inclusions but also the other structuring parameters (position and surface fraction of

inclusions in our case). Still, the smaller the inclusion particle size, the larger the available space

between the particles in the path ➊. This leads to the weaker influence of the spatial distribution of

inclusions observed on the FPZ size. It is revealed in Figure 9 by the value of the standard deviation

that is increased with the inclusion size.
Path ➌ – A third series of tests performed by following the variation path ➌ in which the

inclusion surface fraction is varied while keeping the inclusion size constant at 8mm in order to

solely evaluate the influence of the inclusion surface fraction (or equivalently the inclusion spacing,

since the latter is inversely proportional to the former) on the FPZ size ‘FPZ. Figure 12 shows the

variation of the mean value of ‘FPZ with respect to the inclusion surface fraction Pa. For the sake of

comparison, the results of above studies for the variation paths ➊ and ➋ are plotted as well, but in

the (‘FPZ $ Pa) space. The main observation is that the mean value of ‘FPZ of the path ➊ and the

path ➌ does increase with the increase of the inclusion surface fraction Pa, whereas that of the path

➋ does not change. This is simply explained by the fact that the spacing between inclusions decreases

with the increase of the inclusion surface fraction within the variation paths ➊ and ➌, whereas it

seems to be “constant” (or hardly changed) within the path ➋. By comparing the path ➌ with the

path➊, it is observed, however, that the increase rate of ‘FPZ with respect to Pa, which is represented

by the fitted slope, of the path ➌ is smaller than that of the path ➊. A suitable explanation for this

observation is that within the path ➊, the size of and the spacing between the inclusions do change

(increase and decrease, respectively) at the same time with respect to the increase of Pa whereas only

the spacing of the inclusions does decrease with respect to the increase of Pa within the path ➌.

Therefore, the observation leads to the evidence that the FPZ size depends on both the inclusion spacing

(which is just a consequence of the inclusion surface fraction) and inclusion size.

(a) (b) (c) (d)

Figure 11. Crack patterns and the corresponding FPZ size ‘FPZ [mm] of the LD tensile tests on the specimen made
of the material with inclusion size d¼ 6 mm with four different position distributions of the inclusions (Pa ’ 35%).
Blue and black points are the broken elements: black for wide-open macro-cracks and blue for barely-open micro-
craks. The sample dimensions are shown in Figure 3(a). The mean number of elements per macro crack is in the
order of 80.
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Specimen width. The above studies of ‘FPZ are performed on slender specimens (small ligament size,
i.e., in the order of 3� d compared to inclusion size d). These slender specimens were used to ensure
the damage distribution in DD-tests as homogeneous as possible for studies of the characteristic
length ‘c which is presented above. However, it was shown that the FPZ size ‘FPZ performed on
these slender specimens strongly depends on the position of inclusions. This can be considered as a
drawback for an attempt to correlate the FPZ size and the microstructural characteristic size.
Therefore, it would be better if the study of ‘FPZ is performed on a larger specimen size compared
to the inclusion size. To this end, tensile tests are performed on the specimen shown in Figure 13
with mono-sized inclusion structures and the inclusion size is varied by taking the value 4, 6, 8 and
10mm. Three variation paths above are also considered here.

Figures 14 and 15 show the variations of ‘FPZ with respect to the inclusion size d when keeping
the number and the position of inclusions unchanged (path ➊), and when keeping the surface
fraction of inclusion constant at 30% to 40% (path ➋), respectively. Figure 16 shows the variation
of ‘FPZ with respect to the surface fraction Pa when keeping the inclusion size constant at 8mm
(path ➌). It exhibits that the variation of ‘FPZ with respect to the position of inclusions is less
important than the previous cases. Also, better fit is obtained with higher coefficients of correlation
(0.99, 0.93 and 0.96 for paths ➊, ➋ and ➌ respectively).

By comparison between Figures 14 and 15, it can be seen that, in contrast to the results obtained
from the slender specimens, a higher influence of the inclusion size d on the FPZ size ‘FPZ of the
variation path ➋ compared to that of the variation path➊. Indeed, a higher value of the fit slope is
obtained within the variation path ➋. It is likely due to the fact that when analysing on the larger
specimen (compared to the inclusion size), the sensitivity of ‘FPZ with respect to the position of
inclusions is less important than testing on the slender specimen, and thus the role of the inclusion
size in the FPZ size prevails over the position. So, in conjunction with the influence of the inclusion
surface fraction on the FPZ size (which can be observed in Figure 16), the higher influence of the
inclusion size on the FPZ size is obtained within the path ➋ than that within the path ➊ because
varying the inclusion size in the path➋ is combined with a higher surface fraction of inclusions than
in the path ➊.

Figure 12. Variation of ‘FPZ according to the inclusion surface fraction Pa of the three variation paths ➊, ➋ and ➌.
The sample dimensions are shown in Figure 3(a).
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Therefore, a partial, original though, conclusion which can be drawn is that depending on the

relative size between the macroscopic size (specimen size) and the mesoscopic size (inclusion size),

the influence of the mesostructure on the FPZ size is different. When this relative size is small, the

effect of the position of inclusions or the spacing between inclusions of the mesostructure prevails

Figure 13. Specimen dimensions [mm].

Figure 14. Variation of ‘FPZ according to the inclusion size d of the variation path ➊, obtained from tests with
specimen dimensions shown in Figure 13.

Figure 15. Variation of ‘FPZ according to the inclusion size d of the variation path ➋ (with specimen of Figure 13).
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over the effect of the inclusion surface fraction. When the relative size is more important (�5), the
prevalence of inclusion arrangement is lowered. In any case, the influence of the inclusion size (or
the space between them) on the FPZ size is always recognised.

Ligament size. The specimen geometry is shown in Figure 17 and the dimensions of the specimens
used in the numerical test are the same (specimen size a¼ 100mm and notch width d¼ 2mm),
excepted for the notch lengths c that results in different ligament lengths: 90, 80, 65 and 50mm.
They are labeled by L, M, S and XS respectively for convenience.

In order to study the influence of the maximum inclusion size dmax on the FPZ size, the tensile
tests are performed on the specimens made of the material with a polydisperse inclusion structure
with dmax being 6.3, 8, 10, 12.5 and 16mm and the reference inclusion surface fraction is kept
constant at �35%. The minimum inclusion size dmin is 3.15mm. All the inclusion gradings are
generated by the Fuller’s curve which is an “ideal” grading curve (Fuller and Thompson, 1906). In
the study, for each inclusion grading up to dmax, five inclusion structure realisations are generated
with independently random distribution of inclusion positions. The specimens are loaded in tension
by directly imposing the vertical displacement increment on the nodes of the top boundary of the
specimens while vertically fixing the nodes of their bottom boundary.

Figure 18 shows the relationship between the FPZ size ‘FPZ with respect to the maximum inclu-
sion size dmax for the specimens corresponding to four ligament lengths L, M, S and XS. This figure
also shows the FPZ size of L, M, S, XS specimens in which no inclusion structure has been intro-
duced. It is seen that, when the inclusion structures are introduced, it always results in a larger FPZ
size than the one computed with the homogeneous cases. It is due to the disturbance by the
inclusions whatever their geometrical properties. For a given value of dmax, the mean value of
‘FPZ is systematically increased when the ligament size is increased. In addition, the increase rate
of ‘FPZ is also increased with dmax. It results in an higher slope of variation of ‘FPZ as a function of
dmax for a larger ligament size. It is also observed that the increase rate of the slope of variation of
‘FPZ decreases with the increase of the ligament size from XS specimens to L specimens. So, a
stabilised value of variation slope can be achieved for specimens with the ligament size being in
order of specimen width. When the ligament size is half (and may be lower by extrapolation)
specimen width (the XS specimens), the variation slope is negligible, which means that the inclusion
size appears to have no influence on the mean value of ‘FPZ. It may suggest that the FPZ has not
enough time to develop completely within the specimens with “too short” ligament length. Between

Figure 16. Variation of ‘FPZ according to the inclusion surface fraction Pa of the variation path ➌ (with specimen of
Figure 13).
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these limits, the slope variation evolves progressively, indicating that both the inclusion structure
and the specimen dimension itself can play a role on the FPZ size. The maximum-inclusion-size
independence of ‘FPZ for the specimens with too short ligament length is in agreement with the
previous analysis performed on the specimen which also has a short ligament length.

Figure 19 shows some typical crack patterns (selected among several realisations of inclusion
positions) and the value of ‘FPZ corresponding to the smallest inclusion sizes (dmax ¼ 6:3 mm) and
the biggest ones (dmax ¼ 16 mm) for the two extreme ligament lengths (XS and L). In the case of XS
specimens (Figures 19(a) and (c)), whatever the maximum inclusion size, a crack without bifurcation
crosses the ligament by connecting ITZ elements with a path that seems to be the shortest. Whereas,
in the case of L specimens (Figures 19(b) and (d)), even if only one crack finally crosses the ligament,
a number of microcracks occur either side of the inclusions. As a consequence, the FPZ size is in

Figure 17. Specimen geometry.

Figure 18. Influence of the ligament length on the variation of the FPZ size ‘FPZ with respect to the maximum
inclusion size dmax: L (long ligament), M (medium ligament), S (small ligament), XS (extra small ligament).
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direct proportion with the maximum inclusion size in the latter case. This should be simply because

the microcracks have enough space to develop in specimens with large ligament. This is also due to a

lower stress concentration at the notch tip compared to the numerous weak points of ITZ.

Material characteristic length versus FPZ size

The influence of the material mesostructure on the FPZ size is studied. The aim is now to question

whether the same influence can be observed on the characteristic length of the material. Although

(a) (b)

(d)(c)

Figure 19. Crack patterns and the corresponding FPZ size ‘FPZ [mm] of the XS specimens (left) and the L speci-
mens (right), both made of the material with dmax ¼ 6:3 mm (top) and dmax ¼ 16 mm (bottom). It is recalled here that
the sizes of the inclusions follow Fuller’s grading curves from dmin ¼ 3:15 mm and dmax, and the inclusion surface
fraction is Pa ’ 35%. The black dots indicate broken elements with the largest opening – read as the macrocrack –
while the blue dots stand for the remaining broken elements – read as the microcrack. The mean number of elements
per macro crack is in the order of 150 for XS specimens, 300 for L specimens.
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many simulations were carried out to answer this question, we only focus herein on two mesoscopic
features that may influence the characteristic length ‘c, the inclusion size with (i) fixed position, and
(ii) fixed surface fraction.

First, the lattice simulations are performed by varying the inclusion size while both the positions
and the number of inclusions remain unchanged. This concerns the path ➊ of mesostructure var-
iation in which the monodisperse diameter of inclusions is changed by setting their values to 4, 6, 8,
and then 10mm. Figure 20 shows the relation between the characteristic length ‘c and the inclusion
size d. For a comparison with the FPZ size ‘FPZ, the relation between ‘FPZ, computed from the LD
tests, and the inclusion size is shown as well. The main observation is that ‘c and ‘FPZ have the same
order of magnitude and trend with respect to the inclusion size. However, the ratio between the two
lengths depends on the inclusions diameter.

The increase in d results in an increase of standard deviations of ‘c as previously observed in the
variation of the FPZ size ‘FPZ. This is explained by the same reasons mentioned above for the
FPZ size.

Now the question is whether the variation of the characteristic length ‘c with respect to the
inclusion size d still follows the variation of the FPZ size ‘FPZ with respect to d if we only do
vary the size d of inclusions while keeping the surface fraction of inclusions as constant as possible?
For this end, the path ➋ of the mesostructure variation is used to study the influence of the
inclusion size d on the characteristic length ‘c, in which the “reference” surface fraction of inclusions
is kept at �35% when changing the inclusion size.

Figure 21 shows the characteristic length of the material ‘c as a function of the inclusion size d.
The plot between the FPZ size ‘FPZ and d is shown as well. It exhibits that increasing d does not lead
to an increase of ‘c, as previously observed in the case of ‘FPZ. With a fixed value of the inclusion
size, the resulting characteristic length of the material varies upon the spatial distribution of inclu-
sions. However, the mean value of the characteristic length with respect to the spatial distribution of
inclusions seems to be unchanged upon the increase of the inclusion size. The reason for this non-
sensitivity may be related to the fact that the spacing between the inclusions, thus the spacing
between the ITZs, seems to be insignificantly changing when the inclusion size is increased, as
previously shown for the case of the FPZ size.

Figure 20. Variation of the characteristic length of the material ‘c and the FPZ size ‘FPZ with respect to the inclusion
size d within the path ➊ of variation.

Bui et al. 21



Conclusion

Two types of tensile tests have been performed to study the key features that influence the FPZ size
‘FPZ and the material characteristic length ‘c. The assessment of ‘FPZ is achieved via localised
damage (LD) tests as a width of four standard deviations of the distribution of break events
around the mean crack path. The characteristic length ‘c is measured via both LD and distributed
damage (DD) tests as the ratio of fracture Gf energy to dissipated density energy Ws (this ratio is
dimensionally a length). The numerical simulations are performed on the brittle elastic model
material with inclusions. Since the objective was not to explore the objectivity of the mechanical
response, nor to investigate mesh dependencies, a fixe space discretisation is used. The material is
then modelled as a three-phase material with the inclusion and matrix phases, and the interfacial
transition zone (ITZ) in-between them. Not only the mesostructure characteristics of the material
but also the specimen geometry and the ligament size are varied in order to analyse their effect on
the resulting FPZ size and material characteristic length. Five independent realisations of inclusion
positions are generated for each case of the mesostructure so that the average values of ‘FPZ and of
‘c over that five realisations are used to study the effect of the mesostructure. A standard deviation
is also provided. The study points out the influences of: (i) the inclusion size with fixed surface
fraction, (ii) the inclusion size in which the number and the position of inclusions are unchanged,
(iii) the inclusion surface fraction with fixed inclusion size, and finally (iv) the ligament size of the
specimen, on ‘FPZ and ‘c.

From the extensive study, one can observe that not only the material mesostructure but also the
structural characteristics have a direct influence on the size of the fracture process zone of quasi-
brittle materials. The effect of the structure on the FPZ has been separated from the one of the
material by performing tests with different specimen sizes. With large specimens in which the frac-
ture has space to develop when it goes across the specimen width, the final FPZ width is observed to
be proportional to the maximum aggregate size (‘FPZ �Dmax); see Figures 14 and 15. The propor-
tionnality coefficient varies in our study from 1.17 for a fixed number of inclusion to 1.41 when the
inclusion ratio is kept constant. With thin specimens, some specificities of the mesostructure, in
addition to the maximum aggregate size, plays an essential role in the development of the FPZ.
Indeed, the spacing between aggregates and the relative position of aggregates close to the specimen

Figure 21. Variation of the characteristic length of the material ‘c and the FPZ size ‘FPZ with respect to the inclusion
size d within the path ➋ of variation.
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notch strongly determine how the FPZ initiates and grows. In these cases, there is no clear corre-
lation between the FPZ size and the aggregate size observed, but the FPZ size is of the same order of
magnitude of the aggregate size; see Figure 9. Ligament size, which is a structural parameter, also
has a strong effect on the FPZ. Actually, within the same aggregate grading, larger ligament size
results in larger FPZ size; see Figure 18. Essentially, the following qualitative conclusions can be
drawn:

• It appears that not basically the size, but other parameters that characterise the inclusion struc-
ture of the material such as the surface fraction, strongly affects the size of the FPZ, and thus the
characteristic length of the material. The space between the inclusions appears to be a potential
candidate for a microstructural characteristic size. We expect that the characteristic length is
actually a function of different microstructural lengths, or a single parameter constructed from a
combination of different lengths ‘c /

X
i

daii . This should be the object of future investigations.
• The measured value of the FPZ size is also dependent on the specimen geometry and the ligament

size of specimens. Therefore, it is difficult to avoid the conclusion that the FPZ size is not an
intrinsic property of the material as usually believed. The model proposed by Giry et al. (2011)
supports this idea while it introduces a dependency to the configuration of the local stress field,
which is itself affected by the mesoscopic geometries. However, in the present study, it seems true
that the FPZ size remains in the same order when the tested system is the same (mesostructure,
global geometry and dimensions, loading conditions. . .).

• The assessment of the characteristic length of the material is essential for using its value as the
internal length in nonlocal models. However, just like the FPZ size, it is difficult to avoid struc-
tural effects in the method of measurement of the characteristic length. One more time, a stress-
based model (Giry et al., 2011) sounds like a good option to this question.

This is a first step to study the influence of inclusion properties on the characteristic length and
several interesting qualitative conclusions on the numerical model material have already been point-
ed out. For the future work, we plan to study the effect of the mechanical properties, especially the
ratios of the different stiffnesses and strengths of the material phases, on the resulting FPZ size and
material characteristic length. Future developments will also aim to develop the numerical model to
be more representative of quasi-brittle materials with several inclusion grading sizes, especially
concrete. The use of the peridynamics approach (Rossi Cabral et al., 2019), which cancels out
the influence of a mesh thank to bond-forces with long range horizons, seems better suited to the
present field of investigation. Using super-computers will also allow us to run 3D simulations and
more realisations for a given material set.

It should be emphasized, once again, that in this numerical study, objective assessment of the
FPZ size is beyond the scope, and only its evolution as a function of meso-structure has been
examined. The reader interested in an objective evaluation of this length, could refer to a recent
experimental study which shows that the fracture process zone length, assessed by a digital image
correlation technique in rocks, changes according to the loading mode ratio (in a mixed mode Iþ II
condition), the size of the sample, its geometry, but also the material properties (Moazzami et al.,
2019). Such an experimental study applied to real concrete would be of great interest to investigate
whether the observations made in the present study are relevant.
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Note

1. The surface fraction of inclusions can not be kept constant at 40% when changing the inclusion size, because

the smaller the inclusion size, the greater the number of particles are needed. This results in a greater number

of ITZ elements and consequently a smaller number of inclusion elements.
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