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We investigate shear strength properties of wet granular materials in the pendular state �i.e., the state where
the liquid phase is discontinuous� as a function of water content. Sand and glass beads were wetted and tested
in a direct shear cell and under various confining pressures. In parallel, we carried out three-dimensional
molecular dynamics simulations by using an explicit equation expressing capillary force as a function of
interparticle distance, water bridge volume, and surface tension. We show that, due to the peculiar features of
capillary interactions, the major influence of water content over the shear strength stems from the distribution
of liquid bonds. This property results in shear strength saturation as a function of water content. We arrive at
the same conclusion by a microscopic analysis of the shear strength. We propose a model that accounts for the
capillary force, the granular texture, and particle size polydispersity. We find fairly good agreement of the
theoretical estimate of the shear strength with both experimental data and simulations. From numerical data, we
analyze the connectivity and anisotropy of different classes of liquid bonds according to the sign and level of
the normal force as well as the bond direction. We find that weak compressive bonds are almost isotropically
distributed whereas strong compressive and tensile bonds have a pronounced anisotropy. The probability
distribution function of normal forces is exponentially decreasing for strong compressive bonds, a decreasing
power-law function over nearly one decade for weak compressive bonds, and an increasing linear function in
the range of tensile bonds. These features suggest that different bond classes do not play the same role with
respect to the shear strength.
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I. INTRODUCTION

Capillary cohesion is known to influence strongly the
strength and flow properties of granular materials. For ex-
ample, sandcastles keep standing basically due to small
amounts of water between sand grains �1,2�. At low levels of
water content, the water forms a discontinuous phase com-
posed of interparticle bridges that are unevenly distributed in
the bulk �the pendular state�. Obviously, cohesion effects ap-
pear only at low confining pressures, e.g., in surface soils. It
is a common observation that, when plowing a wet granular
soil, large cohesive aggregates are formed. The largest cap-
illary cohesion force for millimeter-size sand grains is about
4�10−4 N independently of meniscus volume. This force is
nearly four times the grain weight, allowing thus for the
formation of cohesive aggregates. Transformations involving
primary particle agglomeration into coherent granules are of
special interest in many applications in a wide range of in-
dustries such as pharmaceuticals, agronomic products, and
detergents �3,4�.

Although capillary phenomena at the interface between
two solid bodies are well understood, it is much less clear
how a collection of grains reacts to the presence of a liquid.
The issue is basically the same as in cohesionless granular
media where the influence of interparticle friction on the
shear strength depends both on the features of the friction
law itself and the granular structure. Similarly, the question
here is the extent to which the features of cohesion interac-

tions are reflected in a global property such as shear strength.
At least two factors seem to be important: the local force
thresholds and the distribution of cohesive bonds in the bulk
�2,5�. There are reasons to think that the spatial distribution
of water bonds should prevail over the absolute amount of
water going to each bond. Our results, as we shall see in this
paper, credit this point.

There is a vast literature dealing with the experimental
behavior of wet granular media. In soil mechanics, where
stability considerations are of primary importance, the influ-
ence of water content on unsaturated earth is mostly studied
in shear tests through the Coulomb cohesion parameter rep-
resenting the shear strength at zero confining stress �6�. On
the other hand, the flowability of wet powders is expressed in
terms of tensile strength measured as the fluidization thresh-
old under vibration or air flow �7�. Direct measurements of
tensile strength have been reported more recently �8–10�. In
granular media, it is generally much more difficult to access
local information such as contact forces or liquid bonds. Few
investigations have recently been reported to visualize liquid
bonds by means of the index matching technique �5,11�.
These observations underline the influence of the distribution
of water bonds.

A detailed description of the behavior at the particle scale
can be obtained by means of molecular dynamics �MD�
simulations with an appropriate prescription of force laws.
Recently, several simulations of wet granular media have
been reported �12–14�. Mikami et al. used this type of simu-
lation together with a regression expression for the liquid
bridge force as a function of liquid bridge volume and sepa-
ration distance between particles �15�. They mainly studied
bubbling behavior and agglomerate formation in a fluidized*Electronic address: richefeu@lmgc.univ-montp2.fr
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bed and they found realistic results. Dense agglomerates
were simulated by Gröger et al. using a cohesive discrete
element method �16�. They found a good agreement with
experimental data for the yield stress at all confining pres-
sures down to the value of the tensile stress. Shear strength
behavior of unsaturated granulates was also studied numeri-
cally by Jiang et al. as a function of suction �pressure differ-
ence between liquid and gas� �17�.

In this paper, we investigate the cohesive behavior of wet
dense granular packings under monotonous shearing by
means of experiments and three-dimensional MD simula-
tions. We also analyze the shear strength from a microscopic
expression of the stress tensor. The experiments are de-
scribed in Sec. II. We study the Coulomb cohesion as a func-
tion of water content for four different materials. The simu-
lations are presented in Sec. III. We use an explicit
expression of the capillary force as a function of interparticle
distance, bridge volume, and surface tension. The Coulomb
cohesion is studied as a function of water content. We also
investigate the bond connectivity and force distributions. In
Sec. IV, we propose a new expression for the shear strength
that accounts for particle polydispersity as well as material
and structural parameters. We finally compare the experi-
mental and numerical results to the theoretical predictions.

II. EXPERIMENTS

The experiments were designed to measure the shear
strength at low confining pressures ��1 kPa�. The principles
of the device are similar to those used in several other inves-
tigations �18–21�. We present here the setup, the materials,
the wetting protocol, and our main results.

A. Experimental setup

A schematic representation of the shearing setup is shown
in Fig. 1. The wet grains are poured in a plexiglas cylindrical

cell and confined by means of a circular lid of area S placed
on top of the material. The lid is equipped with a reservoir
allowing us to impose an overload by adding a desired
amount of sand. The total vertical force N acting on the
sample is the sum of the weights of lid and sand �shown by
A on the figure�. The cell is composed of two disjoint parts
kept together during sample preparation. The upper part can
move horizontally with respect to the lower part by pulling
on a rope attached to it and which supports a cupel through a
pulley �shown by B on the figure�. The pulling force T can be
increased by adding sand into the cupel. The friction force
between the two parts of the cell is reduced by water lubri-
cating the rims and we checked that it remains negligibly
small during shear. In order to reduce the friction force ex-
erted by the material along the walls �Janssen effect�, the
thickness h of the upper part of the sample was taken to be
below the diameter of the cell �46 mm�. The heights of the
upper and lower parts are about 10 and 15 mm, respectively.
The sample is sheared along the common section of the two
parts of the cell. This shear plane is subjected to a tangential
stress �=T /S and a normal stress �=N /S+�gh, where � is
the bulk density and g is the gravity.

In the experiments, we gradually increase the shear stress
� for a fixed value of �. Unstable shearing occurs when �
reaches the shear strength �m, resulting in a sudden slide of
the upper part of the sample. The upper part is stopped by
collision with two bars located 5 mm away from the cell. We
did not measure the displacements. We recorded �m for dif-
ferent values of � in the range varying from 200 to 800 Pa,
and for different values of water content.

B. Materials and wetting protocol

We used four types of materials: �1� a sand composed of
angular grains with diameter in the range from
0.1 to 0.4 mm, �2� “tightly graded” polydisperse glass beads
with diameters from 0.4 to 0.5 mm, �3� “well-graded” poly-
disperse glass beads with diameters from 0.4 to 0.8 mm, and
�4� monodisperse glass beads of diameter 1 mm.

In order to wet the grains, we add distilled water to dry
material placed in a vessel which is then closed and energeti-
cally shaken for about 1 min. The vessel used for mixing is
transparent so that during shaking we can check visually
whether the water is homogeneously mixed with the grains.
In particular, we continue shaking until all visible water clus-
ters disappear. Increasing the duration of shaking beyond
1 min did not change the measured values of the shear
strength. After mixing, the wetted material is poured into the
testing cell. The water content is evaluated by comparing the
masses of a sample of the material before and after testing by
means of a heat chamber used for drying the sample at
105 °C. The water content is given by w=mw /ms, where mw
and ms are the masses of water and grains, respectively. The
wet materials were tested for water contents below 0.05 cor-
responding to the pendular state for our materials. The ex-
periments were performed at ambient conditions. Each ex-
periment lasted a few minutes. The loss of liquid was always
below 2%. This loss is not only due to evaporation but also
due to partial wetting of the internal walls of the cell. It is

FIG. 1. Testing cell and shearing setup.
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small enough to assume a constant liquid volume �as in
simulations, see below�.

C. Results

Figure 2�a� shows the yield loci �−� for the sand at sev-
eral levels of water content w. Within experimental preci-
sion, the data are well fitted by a straight line, in agreement
with the Mohr-Coulomb model

� = �� + c , �1�

where �=tan � is the internal coefficient of friction and c is
the Coulomb cohesion. It is remarkable that ��33° is al-
most independant of w. On the other hand, the Coulomb
cohesion increases nonlinearly with w and saturates to cm
�600 Pa at wm�0.03, as shown in Fig. 2�b�.

For tightly graded polydisperse beads we get a similar
behavior with ��30° �Figs. 3�a� and 3�b��. However, satu-
ration occurs at a lower level of water content �wm�0.025�
and cohesion �cm�350 Pa�. Figures 4�a� and 4�b� show the
results for well-graded polydisperse beads. Saturation occurs
at about wm�0.01 and cm�300 Pa. Enhanced fluctuations
observed in the data from glass beads, compared to the sand,

may be attributed to a lower level of cohesion and a tighter
size distribution of glass beads. In fact, a lower level of co-
hesion leads to larger mobility of the particles and the poros-
ity increases as the particle sizes are less widely distributed.
In the case of monodisperse beads, the cohesion jumps from
zero for the dry material to a nonzero value �cm�150 Pa�
independently from water content �Figs. 5�a� and 5�b��.
Since we have few data points between w=0 and w�0.01,
the saturation level wm should be below 0.01.

Notice that the shear tests provide quite reproducible re-
sults. We see that, in Figs. 2�a�, 3�a�, 4�a�, and 5�a�, the
Mohr-Coulomb line passes through most of data points. The
very weak dispersion of the data points about this line shows
the high reproducibility of the testing procedure. This means
that the experimental measurement of the Coulomb cohesion
is reliable. The different values of cm for different materials
will be discussed in Sec. IV �see also Table I�.

The value of wm is less clearly defined and it is likely to
depend on two factors: �1� the surface state of the particles
and �2� possible clustering of the liquid phase �2,5,11�. The
sand grains have a rough surface requiring more water to
form a meniscus than glass beads, which are much more
smooth. On the other hand, partial clustering of water may
occur and this might require a larger amount of water for the

FIG. 2. �a� Yield loci �−� of sand for increasing level of water
content. �b� The Coulomb cohesion as a function of water content.
The dashed line is drawn as a guide to the eyes.

FIG. 3. �a� Yield loci �−� of tightly-graded glass beads for
increasing level of water content. �b� The Coulomb cohesion as a
function of water content.
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formation of liquid bridges, although we observed no clus-
tering at the visible parts of the packing through the trans-
parent walls of the testing cell. It is worth noting that it is not
straightforward to evaluate the variability of w since each
value results from several experiments. If the evaluation is
based only on the measurement of the water content at the
beginning and at the end of each test, the error would be as
small as 2% and this cannot be shown in the figures �it would
be smaller than the size of the data point symbols�.

III. SIMULATIONS

For the simulations, we employed the framework of the
molecular dynamics method �22,23�. This method is referred
to as the distinct element method �DEM� in the geotechnical
context. The heart of our simulations is, however, the model
of capillary cohesion and its implementation, as well as the
way liquid bridges are numerically distributed in the pack-
ing. These aspects are detailed below.

A. Molecular dynamics

We implemented the basic molecular dynamics method
for spherical particles. The equations of motion are inte-
grated according to the velocity Verlet scheme. The normal

force between two particles is the sum of a repulsive force as
a linear function of the overlap and an attraction force due to
the presence of a liquid bridge at contact or for a gap up to a
rupture distance �see below�. As usual in molecular dynamics
simulations, normal dissipation is accounted for by viscous
damping. The particles interact also through a Coulomb fric-
tion law with a viscous regularization at low sliding veloci-
ties. The material is sheared quasistatically in a direct shear
cell in the presence of gravity and confining stresses. The
damping parameter and the normal stiffness �force per unit

FIG. 4. �a� Yield loci �−� of well-graded glass beads for in-
creasing level of water content. �b� The Coulomb cohesion as a
function of water content.

FIG. 5. �a� Yield loci �−� of monodisperse glass beads for
increasing level of water content. �b� The Coulomb cohesion as a
function of water content.

TABLE I. Measured and theoretical parameters for all our ex-
perimental and numerical samples. The approximate value of the
bond coordination number z for the experiments �indicated by a
question mark� was suggested by the literature �5,11�.

Sand GB1a GB2b GB3c Simulations

�d� �mm� 0.16 0.45 0.60 1.00 1.65

s 0.50 0.99 0.91 1.00 0.79

z 6�?� 6�?� 6�?� 6�?� 9

� 0.6 0.6 0.6 0.6 0.6

� 0.66 0.58 0.58 0.46 0.48

cm �Pa� 600 350 300 150 120

cth �Pa� 709 438 302 158 118

aTightly-graded polydisperse glass beads.
bWell-graded polydisperse glass beads.
cMonodisperse glass beads.
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overlap� were adjusted in order to get largest time step
�10−6 s� and small overlaps within numerical stability. The
normal stiffness and the interparticle coefficient of friction
were 103 N/m and 0.4, respectively.

B. Capillary cohesion law

The capillary attraction force between two particles is a
consequence of the liquid surface tension and the pressure
difference between liquid and gas phases �24�. For efficient
numerical calculation, we need an explicit expression of the
capillary force fn

c as a function of the interparticle gap 	n. By
extending the work of Mikami et al. �15�, it was recently
shown by Soulié et al. �25� that the capillary force can be
cast in the following form:

fn
c = �− 
�s

	R1R2�exp�A	n
� + B� + C� for 	n

� � 0,

− 
�s
	R1R2�exp�B� + C� for 	n

�  0

 ,

�2�

where R1 and R2 are the sphere radii �R1R2�, �s is the
liquid surface tension, and 	n

‡=	n /R2 �see Fig. 6�. The pa-
rameters A, B, and C are functions of the liquid volume Vb of
the bond and the contact angle � as follows:

A = − 1.1�Vb
��−0.53,

B = �− 0.148 ln Vb
� − 0.96��2 − 0.0082 ln Vb

� + 0.48,

C = 0.0018 ln Vb
� + 0.078, �3�

where Vb
�=Vb /R2

3.
It can be shown that a liquid bond is stable as long as the

gap is below a debonding distance 	n
max given by �13�

	n
max = �1 + 0.5��Vb

1/3. �4�

Figure 6 shows a schematic representation of the capillary
force as a function of the gap. In Fig. 7 the capillary force fn

c

is displayed as a function of the gap 	n according to Eq. �2�
for different values of the liquid bridge volume Vb. These
plots are in perfect agreement with those obtained by other
authors by integration of the Laplace-Young equation and
verified experimentally �26�. The largest absolute value f0 of
the capillary force occurs at 	n=0. It is remarkable that f0 is
directly proportional to 	R1R2 and only very weakly depen-
dent on the liquid volume. This property, which might seem
counter-intuitive, is important for the model that will be in-
troduced in Sec. IV. Hence, with a good approximation, we
may write

f0 = �	R1R2, �5�

where � is a function only of the surface tension and the
contact angle. In our case, with glass beads and water
bridges, we have �=0.4 N/m. Let us underline here the fact
that the capillary bond in the range 	n�0 is unstable with
respect to the forces acting on two particles. In other words,
when pulling two particles apart from one another, the liquid
bond fails at zero gap for fn=−f0. In our simulations, we find
that the fraction of liquid bonds in the range 	n�0 is always
below 15% �see Fig. 11�. This shows that the capillary fail-
ure threshold f0 is far more important for the failure of a wet
material than the debonding distance 	n

max. This point will be
discussed in more detail in Sec. IV.

C. Sample preparation

The numerical samples are composed of spherical par-
ticles of three different diameters �2, 1.5, and 1 mm� placed
randomly in a cylindrical cell in appropriate proportions
�50%, 30%, and 20%� to represent one of our experimental
samples composed of glass beads. The initial configuration is
prepared under gravity without introducing capillary bonds.
Then, we attribute a capillary bond to each pair of particles
within the debonding distance. Finally, the sample is consoli-
dated under the action of a vertical confining pressure with a
zero coefficient of friction. The consolidation is stopped and
the coefficient of friction set to 0.4 as soon as the solid frac-
tion �=0.6 is reached. The subsequent compaction is negli-
gibly small.

The volume Vb attributed to a capillary bond between two
particles is taken to be proportional to the particle diameters
and the intercenter distance, and such that the total volume of

FIG. 6. Typical behavior of the capilliry force fn
c as a function of

the gap 	n �solid line�. The elastic repulsive normal force as a result
of overlapping �	n�0� is shown �short-dashed line�. The resultant
normal force in this range is shown as well �long-dashed line�. zc+,
zc−, and z− are the partial wet coordination numbers in this range.
Inset: Geometry of a liquid bridge between two particles.

FIG. 7. Capillary force as a function of the gap according to Eq.
�2� for increasing liquid volume Vb.
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all liquid bonds in the sample is equal to that of the added
water. Since all particle pairs within the debonding distance
are considered, the liquid coordination number z �i.e., the
average number of liquid bonds per particle� obtained by this
procedure has the highest possible value. For our sample we
get z=8 for w=0.01 �see Fig. 14�. In our simulations, the
liquid bond volumes vary by a factor of 8 from the contact
between the smallest particles to that between the largest
particles. On the other hand, the contact angle with a good
approximation was set to zero. Moreover, since the debond-
ing length varies as Vb

1/3, there is a factor of 2 between the
shortest and longest debonding distances.

During shearing, the number of liquid bonds evolves and
the available liquid must be redistributed in the system. We
used two different methods for redistribution: �1� we simply
apply the above procedure every time the contact list is up-
dated and �2� the volume of a broken liquid bond is split
between the corresponding particles �proportionally to their
diameters� and conserved for the formation of new liquid
bonds when a contact occurs with the same particles. In this
method, the volume of free liquid left after debonding is kept
with the two particles �and not distributed to the other bonds
of the same particles� and used only if a new contact is
formed. This implies that, if the initial liquid distribution is
homogeneous, then it will remain so during deformation as
in the first method. In other words, the liquid will not migrate
considerably and one should expect quite similar results
from both methods. Indeed, in different tests, we found that
both methods lead to nearly identical results. Unless men-
tioned explicitly, all results presented in this section were
obtained by the first method.

D. Boundary conditions and driving

As in experiments, the cylindrical cell is composed of two
disjoint parts. The lower part is fixed whereas the upper part
moves horizontally, giving rise to a shear plane along the
common section of the two parts. We apply a constant verti-
cal load �, the same as in experiments, on top of the sample.
However, in contrast to experiments, shearing is controlled
by imposing a constant horizontal velocity on the upper part.
The numerical sample has exactly the same dimensions as in
experiments.

E. Results

Figure 8 shows the stress-strain plot for a dry and a wet
sample with w=0.01. The initial configuration is the same in
both simulations. The initial elastic increase of � �up to
�75 Pa� as a function of 	� is common between the two
samples. We observe no stress peak in the wet case. The
steady state �“critical state” in soils mechanics� is reached at
	���d� for all water contents. The steady-state deformation
involves numerous instabilities that occur throughout the
system and appear in the form of rapid stress drops on the
stress-strain plots. We see that in transition from dry to wet
materials the frequency of such instabilities declines while
their amplitudes grow.

We now turn to the evolution of the Coulomb cohesion as
a function of w. Figure 9�a� shows fitted yield loci from 15

simulations involving three different values of the confining
pressure � and five different values of the water content w.
The Coulomb cohesion c is drawn as a function of w in Fig.
9�b�. The latter is very similar to the corresponding experi-
mental plot �Fig. 5�b�� for monodisperse glass beads. We
observe a saturation of c at still lower levels of water content
�wm�0.001�. Note also that, while the average grain size is
nearly the same in these simulations and in the case of mono-
disperse experimental glass beads, the maximum cohesion
cm=120 Pa in the simulations is very close to that �150 Pa�
for 1 mm glass beads.

FIG. 8. The shear stress � as a function of shearing distance 	�
normalized by the average particle diameter �d� for a dry and a wet
sample simulated by the molecular dynamics method. The confining
stress is �=300 Pa.

FIG. 9. �a� Yield loci �−� from 15 simulations for increasing
level of water content. �b� The corresponding values of the Cou-
lomb cohesion c as a function of water content.
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In contrast to the experiments, where the stresses are mea-
sured at the walls, it is also possible to compute the stress
tensor for grain-to-grain forces in the simulations �see be-
low�. However, we found that in our simulations, the results
from these two methods do not coincide. This is because in
direct shearing, wall effects give rise to large stress gradients
in the bulk. This point has been analyzed in detail by
Thornton and Zhang �27�. We used here the wall stresses �
and � for comparison with the corresponding experimental
values.

Figure 10 displays a typical example of the force network
in a thin vertical layer �parallel to xy plane�. We observe a
strongly inhomogeneous transmission of both compressive
and tensile forces. The liquid bonds belong to three different
classes: �1� contacts carrying a compressive �positive� force,
�2� contacts carrying a tensile �negative� force, and �3� liquid
bonds with no contact and thus carrying a tensile force. We
denote the corresponding partial coordination numbers by
zc+, zc−, and z−, respectively �see Fig. 6�. Figure 11 shows the
evolution of these partial coordination numbers as a function
of shear displacement. Interestingly, although the bonds are
optimally distributed in the sample �according to the first
redistribution method�, z− is only about one bond per par-
ticle. This means that the overall contribution of this class,

involving a low number of bonds and rather weak forces, to
stress transmission is marginal. The evolution of particle
connectivity is mainly reflected in the regular fall-off of zc−

during shear. This class, with numerous contacts and a high
force level, provides the largest contribution to the transmis-
sion of tensile stresses in the packing. The rather large and
constant value of zc+ is a reflection of the fact that the pack-
ing is globally subjected to boundary compressive stresses.

The probability distribution function P of normal bond
forces is shown in Fig. 12. The largest forces belong to the
compressive network �involving no limiting threshold�
whereas the tensile forces extend down to the capillary force
threshold −f0. The distribution reveals three different force
intervals with different statistics in each interval:

P�fn� ��
e−�fn/�fn� for fn � �fn� ,

 fn

�fn�
�−�

for 0 � fn � �fn� ,

�
fn + f0

�fn�
+ P0 for − f0 � fn � 0,� �6�

where �fn� is the average normal force, ��0.4, ��0.16, �
�0.15, and P0= P�−f0�. The distribution for compressive
forces is reminiscent of that observed in dry granular media
�28–30�. The exponent � has, however, a smaller value in the
cohesive case. This means that tensile forces allow the pack-
ing to sustain stronger compressive force chains than in a
cohesionless material. The power law distribution of weak
compressive forces �the range 0� fn� �fn�� over nearly one
decade suggests that, in the presence of cohesive bonds, the
contact network in this range is self-similar. These contacts
are referred to as “weak contacts” and they play an important
role in propping strong force chains in the complementary
“strong network” �the range fn� �fn���31�. The probability
distribution P is robust and the exponents do not evolve dur-
ing shear.

Figure 13�a� shows a polar diagram of the probability
distribution function P�n� of bond directions n at the end of
shearing for w=0.02 �the distribution being similar in other
cases�. The distribution is nearly isotropic along the shear
plane �xz plane in the figure� but it shows a pronounced

FIG. 10. Compressive force network �a� and tensile force net-
work �b� in a thin vertical layer. Weak forces are not shown. xz is
the shear plane and the y axis points upward.

FIG. 11. Partial coordination numbers as a function of shearing
distance.
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anisotropy in the shear direction along the vertical plane �xy
plane in the figure�. Figure 13�b� displays three separate po-
lar diagrams of the strong, weak, and tensile bonds along the
vertical plane. The strong compressive bonds form an aniso-
tropic distribution with its longest axis oriented at 45° to the
horizontal, as expected. The weak compressive bonds have a
nearly isotropic distribution. Finally, the tensile bonds have
an anisotropic distribution whose longest axis is perpendicu-
lar to that of strong compressive bonds. It has also been
argued that the tensile forces play the same role in sustaining
the strong force chains as the weak network �32�.

IV. A MICROSCOPIC ANALYSIS

In this section, we would like to propose an expression for
the Coulomb cohesion c as a function of parameters pertain-
ing to the granular microstructure in the presence of liquid
bonds. When the Mohr-Coulomb model �Eq. �1�� is valid
also in the range of negative stresses down to the tensile
strength −�t, the Coulomb cohesion is related to the tensile
strength by c=��t. Keeping with this assumption, we there-
fore consider the tensile strength. Theoretical evaluation of
the tensile strength and its comparison with experiments or
simulations can be found in recent literature concerning wet
granular materials �8,16�. The first theoretical expression of
tensile strength was proposed by Rumpf �33�. The key point
is how capillary forces are mobilized in a wet material and
what are the relevant structural parameters. Several param-
eters, such as the particle size and its distribution, the solid
fraction �, and the internal coefficient of friction �, influ-
ence the macroscopic cohesion. The effect of the water con-

FIG. 12. Probalility distribution function P of normal forces fn

normalized by the mean �fn� represented on linear scale �a�, log-
linear scale �b�, and log-log scale �c�.

FIG. 13. �Color online� �a� Polar diagram of the probability
distribution function of bond direction. �b� Polar diagrams of strong
�solid line�, weak �dashed line�, and tensile �dotted line� bonds
along the vertical plane. The direction of extension and compres-
sion are represented �arrows�.
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tent w is somehow counter-intuitive. Indeed, the Coulomb
cohesion saturates as the water content is increased while we
expect that both the number of liquid bonds and the strength
of each bond should increase with the water content and lead
to higher cohesion.

In order to estimate the tensile strength from contact
forces, we consider the general expression of the stress ten-
sor � in a granular material. This is an average quantity with
a well-established expression involving contact forces fk and
intercenter distances �k �34,35�:

�ij =
1

V
�
k�V

fi
k� j

k, �7�

where i and j refer to components and V is the control vol-
ume. The derivation of this expression is independent of the
nature of interactions so that Eq. �7� holds also in the pres-
ence of capillary forces. In this case, the set of contact points
is simply extended to cover capillary bridges. It can be
shown that � is symmetric if no torques are transmitted at
the interaction points. From Eq. �7�, the stress �11 in the
direction of extension is given by

�11 = nw�f1�1�b, �8�

where nw is the number of bonds per unit volume, and f1 and
�1 are the components along the direction of extension. The
symbol �¯�b designs averaging over all bonds in the control
volume V. Let n and t be the normal unit vector and a tan-
gential unit vector, respectively, at a given bond. Then, f1
= fnn1+ f tt1 and �1=�n1 where fn and f t are the normal and
tangential components of the force, and � is the length of the
branch vector �. Let us set n1=cos � and t1=sin �, where �
is the angle between n and the direction of extension. Sub-
stituting in Eq. �8� and assuming for simplicity that fn and f t
are independent of �, we arrive at the following expression:

�11 = 1
2nw�fn��b. �9�

In solid state physics, a theoretical tensile strength �th is
introduced from interatomic forces by assuming that the
same failure threshold is reached simultaneously for all pairs
of atoms in the direction of traction �36�. In a similar ap-
proach, we may introduce a theoretical tensile strength for a
wet particle assembly by replacing fn in Eq. �9� by the cap-
illary force threshold f0:

�th = 1
2nw�f0��b. �10�

The bond density nw is simply half the average number of
bonds per particle divided by the free volume, i.e., the mean
volume Vp of a Voronoi cell surrounding the particle. The
latter is simply the average particle volume �1/6�
�d3� di-
vided by the solid fraction �. Introducing these expressions
in Eq. �10� and using Eq. �5�, we get

�th =
3

2

��z

��R1 + R2��	R1R2��
�d3�

=
3

4

s
��z

�d�
, �11�

where z is the average number of bonds per particle and we
have

s =
�d1/2��d��d3/2�

�d3�
. �12�

In derivation of the expression of s, it was assumed that the
particle radii R1 and R2 are not correlated. This means that
various granulometric classes are homogeneously distributed
in the bulk. It is easy to see that for a uniform size distribu-
tion, s varies from 8/15 to 1 as the smallest particle size
increases from 0 to the mean particle size. For a monodis-
perse assembly, we have s=1 �see Table I�. Equation �11� is
similar to the expression proposed first by Rumpf �33� for
monodisperse materials �so, without the s prefactor� and re-
cently derived from the stress tensor by Gröger et al. �16�.
Our Eq. �11� accounts in a simple way for polydispersity and
the correlation between the capillary force threshold f0 and
the particle size d. For real polydisperse materials, the factor
s is crucial for comparing the model with experiments.

By definition, the Coulomb cohesion is the yield shear
stress at zero confining pressure in which case the capillary
forces are the only forces acting in the material. In this limit,
the normal stress � on the shear plane is simply equal to the
average capillary force divided by the sample section S. We
have seen that “gap” liquid bonds �without contact� contrib-
ute only marginally to force transmission �z− being below
one bond per particle�; see Fig. 11. It is thus reasonable to
assume that the capillary force at each bond is f0. This means
that, in the absence of confining stresses, we may set �
=�th. Then, the shear stress at yield is the theoretical cohe-
sion cth given by

cth = ��th =
3

4

�s

��z

�d�
. �13�

It is important to note that the water content does not
enter the above expression of cth. The only parameter related
to water is �. This suggests that the water content manifests
itself mainly through the wet coordination number z=z−

+zc−+zc+. In particular, the cohesion cm at saturation corre-
sponds to the saturation of z as the water content w is in-
creased. In fact, when a certain amount of water is homoge-
neously distributed in the whole sample within the

FIG. 14. The initial wet coordination number in simulations as a
function of water content.
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debonding distance, one finds that z increases with w and
saturates beyond w=wm. This is shown in Fig. 14 for the
initial configuration of our numerical samples. This is a
purely geometrical effect related to steric exclusions among
particles and it explains therefore the saturation of cohesion
with water content according to Eq. �13�.

Although this geometrical saturation should dominate in
the pendular state, it does not elude that other mechanisms
might play a role in the experiments. In particular, as the
liquid content is increased, the liquid bonds may coalesce at
least locally, leading to bond saturation. We did not observe
liquid bond clustering at the visible parts of our samples.

The initial value of z depends also on the preparation
protocol. Since f0 is independent of w, the same amount of
water can be distributed in such a way as to produce a lower
number of liquid bonds and thus a lower macroscopic cohe-
sion. This effect is illustrated in Fig. 15 where the stress-
strain plots are shown for two initially identical configura-
tions differing only in the number of liquid bonds for the
same water content. The simulation was carried out by using
the second method of liquid redistribution �Sec. III�. In the
sample where half of the water bonds have been removed,
the wet coordination number increases with deformation. But
in the initial stages of deformation, the cohesion is close to
half that of the sample involving a double number of water
bonds, and it increases as the wet coordination number
grows.

We summarize in Table I the theoretical estimates cth and
the measured values cm of the saturated Coulomb cohesion
for all our experimental and numerical samples together with
the values of the parameters involved in Eq. �13�. The value
of the polydispersity factor s was calculated from the knowl-
edge of the particle size distributions. Note that cth is in
excellent agreement with cm both for experiments and simu-
lations. It is noteworthy that if the prefactor s were not in-
corporated in Eq. �13� �i.e., if Rumpf’s equation had been
used�, the measured value of cm would be below cth by a
factor s.

This agreement between the theoretical estimate and ex-
periments with sand and glass beads was obtained with z
=6 which is a reasonable value of the bond coordination
number in the case of a homogeneous distribution of water in
the bulk, and it is suggested by recent experimental observa-
tions �5,11�. Note, however, that in the case of fine-grain
samples �sand and GB1 in Table I� a closer agreement can be
obtained with a lower value of z. This is suggestive in the
sense that liquid bond clustering might indeed occur more
frequently for fine grains and reduce thus the effective bond
coordination number.

By construction, the theoretical estimate is an upper
bound for cohesion. For brittle materials, failure is initiated
by the breakdown of a few bonds and propagates subse-
quently into the material. When this mechanism works, the
tensile strength is not controlled by the average stress �as
assumed in the derivation of �th� but by the largest local
stresses, and hence the effective strength is far below
the theoretical one �in proportion to the stress concentration
factor� �37�. Hence, the nice agreement of the theoretical

estimate both with simulations and experiments suggests that
the failure of our wetted granular materials is ductile and the
shear strength is controlled by the mean tensile force.

V. CONCLUSION

We performed experiments and discrete element simula-
tions to analyze the Coulomb cohesion of wet granular media
in the pendular state. It was shown that the Coulomb cohe-
sion increases with water content and saturates to a maxi-
mum value that depends only on the nature of the material.
An interesting aspect that was partly investigated by simula-
tions is that the cohesion is basically controlled by the num-
ber of liquid bonds. This suggests that the saturation of Cou-
lomb cohesion occurs since new bonds are hardly formed
beyond a certain amount of the water content. On the other
hand, the capillary failure threshold is nearly independent of
the local liquid volume.

Starting with the expression of the stress tensor, we also
introduced a novel expression for the Coulomb cohesion as a
function of material and structural parameters. This expres-
sion extends the classical model of Rumpf to polydisperse
materials. We found that our model is in excellent agreement
with experimental and numerical data.

From numerical data, we analyzed the connectivity and
anisotropy of different classes of liquid bonds according to
the sign and level of the normal force as well as the bond
direction. We found that weak compressive bonds are almost
isotropically distributed whereas strong compressive and ten-
sile bonds have a pronounced anisotropy. It was shown that
the probability distribution function of normal forces is ex-
ponentially decreasing for strong compressive bonds, a de-
creasing power-law function over nearly one decade for
weak compressive bonds and an increasing linear function in
the range of tensile bonds.

In the extension of this work, it is essential to evaluate
the limits of the model by considering other materials and
non-monotonous loading paths. In particular, we would like
tostudy the shear strength of granular media with a larger
polydispersity than materials that were used in the present-
investigation. Since the distribution of liquid bonds
seems to be a major parameter for the cohesion, it also merits

FIG. 15. The shear stress � as a function of shearing distance 	�
normalized by the average particle diameter �d� for a dry and two
wet samples with different numbers of liquid bonds �see text�. The
confining stress is �=300 Pa.
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to be investigated in more detail experimentally. Finally,
an interesting application of the ideas put forward in this
paper would be to examine by which mechanisms the
cohesion of a sample of wet sand increases as a result of
compactification.
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