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Packing spherical discrete elements for large scale simulations
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We introduce a new geometric method to generate sphere packings with restricted overlap values. Sample
generation is an important, but time-consuming, step that precedes a calculation performed with the
discrete element method (DEM). At present, there does not exist any software dedicated to DEM which
would be similar to the mesh software that exists for finite element methods (FEM). A practical objective of
the method is to build very large sphere packings (several hundreds of thousands) in a few minutes instead
of several days as the current dynamic methods do. The developed algorithm uses a new geometric
procedure to position very efficiently the polydisperse spheres in a tetrahedral mesh. The algorithm,
implemented into YADE-OPEN DEM (open-source software), consists in filling tetrahedral meshes with
spheres. In addition to the features of the tetrahedral mesh, the input parameters are the minimum and
maximum radii (or their size ratio), and the magnitude of authorized overlaps. The filling procedure is
stopped when a target solid fraction or number of spheres is reached. Based on this method, an efficient tool
can be designed for DEMs used by researchers and engineers. The generated packings can be isotropic and
the number of contacts per sphere is very high due to its geometric procedure. In this paper, different
properties of the generated packings are characterized and examples from real industrial problems are
presented to show how this method can be used. The current C++ version of this packing algorithm is part
of YADE-OPEN DEM [20] available on the web (https://yade-dem.org).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The discrete element method (DEM) [7] is a powerful tool to
simulate granular media. These media (concretes, [5,23,28], ceramics
[40], powders [24], soils [9,31]) are often represented by random
packing of spheres which exhibit specific properties such as solid
fraction, particle connectivity, particle size distribution and fabric. The
discrete element simulations need sphere packings generated with
chosen geometric properties (that can be similar or not to the real
granular media). In a broad sense, two types of packing constructions
exist: the dynamic approach and the geometric approach.

The first approach is based on dynamic simulations. It is commonly
used for example to prepare numerical samples for the study of soil
[3,30,38], concrete [39], powders [10], Van Der Waals forces [45], or
cohesion [32,33,36]. The main dynamic methods described in the
literature are the iterative growth algorithm [22,41] and the isotropic
compression [2,25]. These dynamic methods can satisfactorily repro-
duce the real packing properties [21,44], but require high time-con-
suming computation.

Unlike dynamic approaches, geometric methods can be used to
quickly build large samples. In fact, assembling a packing of 10,000
spheres may take several days with dynamicsmethods, while the same
project can be made ‘geometrically’ in a few minutes. In return, the
sample is not stable from a mechanical point of view and it contains no
information on the contact forces between the particles. However, even
if the resulting configurations are not stable, they are close enough to a
mechanically acceptable state. Different geometric algorithms were
developed to generate sphere assemblies for example in cylindrical [29],
cubical [16] or conical [18] containers. The well-known ballistic
deposition algorithm [1,17,18] consists in adding spheres one by one
in a geometrically stable position at the surface of an evenly packed set
of spheres. The texture of the packing can be controlledwhen using this
very efficient method [42], but dynamic algorithms show some
limitations when producing complex shapes.

In this paper, a dense and polydisperse sphere packing algorithm is
presented. This new algorithm is of great interest for engineering
problems since very large packings can be built in a few minutes
starting from a tetrahedral mesh. This tool is an extension of a recently
developed geometric algorithm [15]. Since the advent of intensive
computation, the DEM became an interesting alternative tool to study
large deformation processes in materials. In this DEM-based method
[7,9], it is assumed that materials can be approximated as assemblies
of discrete elements bonded together by different models of cohesive
forces; the overall mechanical behavior can be evaluated through the
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collective contributions of these discrete elements under loading or
unloading processes exhibiting motion, displacement, sliding, inter-
element rotation and where de-bonding mimics the nucleation of
cracks [14]. Most of the DEMs use spherical elements because only a
single value, the radius, is required to define the geometry of the
elements and there is only one possible type of contact among
elements, which can be detected easily. As a result, computer memory
requirements and computer processing time are minimized with
these particle shapes and in addition a large number of particles can
be analyzed.

In the Section 2, we present a step by step algorithm to generate
isotropic samples of polydisperse spheres starting from tetrahedral
meshes. Different packing properties will then be characterized in
Section 3. These properties include the solid fraction, the connectivity,
the fabric and order of the packing. The computing time is also
characterized for the C++ version of the code. In the last part, the
developed algorithm will be applied to different engineering cases to
illustrate the abilities of this tool. We emphasize that this method
should not be appropriated for granular materials modeled at the real
particle scale, since crucial characteristics such as the texture or the
size distribution cannot be directly monitored. Hence, the sphere
packing generated by the geometric algorithm presented in this paper
should only be dedicated to reproduce the simulated material at the
macroscopic scale.

2. Algorithm description

The developed geometric algorithm is based on tetrahedral
meshes generated by meshing softwares such as Ghs3D [12], Gmsh
[13] or Netgen [35]. Each tetrahedron is progressively filled with the
following constraints: (i) the sphere radii range from rmin to rmax, (ii)
the sphere overlaps are limited to a given value δnmax=−εrmin, where
ε is the maximum overlap rate. The tetrahedral meshand these
constraint parameters both correspond to the input data that must be
supplied by the user. The key geometric procedure consists in placing
one sphere in contact with four non-coplanar spheres. The first
version of this geometric procedure was based on the inversion
function [4]. In the current version, an equation system for a sphere
intersection with four spheres (see Eqs. (1)–(4) below) is solved.

2.1. Geometric procedure

In order to place a sphere in contact with four other spheres, two
different geometric procedures are implemented in the code. The first
procedure, described in detail in [15], is based on geometric inversion.
The new geometric procedure has proven to be faster. It is based on
solving a system of equations that translates the intersection of a fifth
sphere with four existing spheres:

x−x1ð Þ2 + y−y1ð Þ2 + z−z1ð Þ2 = r + r1ð Þ2; ð1Þ

x−x2ð Þ2 + y−y2ð Þ2 + z−z2ð Þ2 = r + r2ð Þ2; ð2Þ

x−x3ð Þ2 + y−y3ð Þ2 + z−z3ð Þ2 = r + r3ð Þ2; ð3Þ

x−x4ð Þ2 + y−y4ð Þ2 + z−z4ð Þ2 = r + r4ð Þ2; ð4Þ

where x, y and z are the coordinates of the added sphere, r is its radius,
subscript 1, 2, 3 and 4 denote for the four spheres ever placed. A
relation can easily be written by subtracting Eqs. (1)–(4) from one
another:

Ax = b rð Þ; ð5Þ

where:

A = 2
x1−x2ð Þ y1−y2ð Þ z1−z2ð Þ
x1−x3ð Þ y1−y3ð Þ z1−z3ð Þ
x1−x4ð Þ y1−y4ð Þ z1−z4ð Þ

2

4

3

5; ð6Þ
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z
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5; ð7Þ

b rð Þ =

x21 + y21 + z21−r21
! "

− x22 + y22 + z22−r22
! "
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! "
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− x24 + y24 + z24−r24
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−2r r1−r4ð Þ

2

666664

3

777775
: ð8Þ

In Eq. (5) the vector x corresponds to the coordinates of the fifth
sphere, and the right-hand member vector b depends on r. When a
solution exists (i.e. det Að Þ≠0, which is not true when the four spheres
are coplanar for example), it is expressed as a function of r so that

x = A−1b rð Þ = rxa + xb: ð9Þ

where xa and xb are known vectors. Otherwise, the procedure is
stopped. In addition to being faster, this procedure is also able to
detect very quickly a failing sphere insertion. By including Eq. (9) in
Eq. (1), we obtain a second order equation that allows us to evaluate
one or two candidate value(s) of radius r. If r does not satisfy the
predefined radius range or if at least one overlap with any sphere of
the packing exceeds the value prescribed by the user, the position and
radius of the fifth sphere are rejected. Although one unique solution
exists and therefore the involved spheres in Eq. (9) do not overlap, the
fifth sphere can interpenetrate another sphere of the packing. In last
resort, the radius of placed sphere can be decreased to cancel any
overlap. To avoid a too weak connectivity due to the radius reduction,
the fifth sphere is also rejected when it is not in contact with at least
zmin other spheres (with zmin=2, 3 or 4).

As we shall see in the next section, most of the added spheres are
inserted via the geometric procedure during the padding. In short, the
method consists in estimating roughly a loci p(xp, yp, zp) where a
sphere could be added, and using the geometric procedure to put it in
contact with the four nearest packed spheres. Nevertheless, the
estimated loci are sometimes so coarse that the procedure fails. To
increase the chances of placing a sphere close to p, a list of spheres
sorted from nearest to farthest [11] is used to build several four-
spheres sets. The geometric procedure is then applied with these sets
until it can be placed in agreement with the user constraints.

2.2. Sphere packing method

As stated before, the packing method uses a tetrahedral mesh to
generate an assembly of spheres. In this mesh, the mean length of
edges approximately corresponds to 8 times the mean radius of the
spheres. In this section, we detail the packing generation process step
by step from a simple example based on the filling of a cubic
tetrahedral mesh (step 1 in Fig. 1)

In the next two steps, spheres are directly added at the middle
edges and at the nodes (respectively, step 2 and step 3 in Fig. 1). The
radius of all middle-edge spheres is set as a function of the length ℓ of
the corresponding edge (r=ℓ/8), and the radius of all node spheres is
set to the length ℓs of the smallest adjacent edge (r=ℓs). If the radius
is over rmax, a value is randomly chosen in the predefined range. If
the radius is below rmin, its value is set to rmin. After the third step,
spheres can overlap. A routine is then used to reduce iteratively
the radii of overlapping spheres so that the overlap satisfies the
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maximum accepted value. The spheres with a radius smaller than rmin

are removed.
In all the next steps, the spheres are added via the geometric

procedure bygiving a roughestimate of their locus (see Section 2.1).We
first target the barycenter of each triangular face and tetrahedron of the
mesh (step 4 and step 5 in Fig. 1). We then target the loci midway
between the barycenter and the four nodes of each tetrahedron (step 6
in Fig. 1). At the end of these steps, the solid fraction of the packing is
generally lower than 0.55 and the mean number of contact per sphere
(coordination number) is about 5. The total number of spheres N is
about10× thenumber of tetrahedraNt in themesh.A looser packing can
be obtained if steps 5 and 6 are not performed. In this case the solid
fraction is about 0.45 with a coordination number larger than zmin used
in the geometric procedure.

At this point, the packing does not respect the mesh boundaries as
we can see in Fig. 1 (steps 5 and 6). To model the convex boundaries of
the packing, virtual spheres (i.e. spheres not included in the final
packing) are placed tangent to the external side of the triangular
boundary faces of the mesh (Fig. 2). Their radii are set large enough to
approach at best a plane. Packed spheres that overlap thevirtual spheres
(within thegivenerror) are then suppressed as shown in Fig. 1 (step7a).

In order to increase the density of the whole packing and to fill
spheres in the gaps close to the mesh boundaries (created by
removing boundary spheres), we detect ‘void spaces’ where new
spheres could be added by applying the geometric procedure.
Practically, void spaces are tetrahedra resulting from a tridimensional
Delaunay triangulation built with the sphere centers. Note that each
tetrahedron element in the triangulation is determined by four

mutually nearest spheres centered at the vertices. We use the CGAL
library [6] that provides very efficient template functions to build a
Delaunay triangulation. From this point on, the tetrahedra of themesh
are no longer needed, and the tetrahedra in question are those from
the triangulation. A homogeneous density of the packing can be
obtained by filling first the largest void spaces. For this reason and also
to optimize the filling step (step 7b), void spaces Vv

t associated with
each tetrahedron t must be determined and then sorted from largest
to smallest. These volumes are given by:

Vt
v = Vt− ∑

4

i=1

Sti
Si
Vi

 !
; ð10Þ

where Vt is the volume of the tetrahedron, Vi and Si are respectively the
volume and the surface of the spheres at the vertices of the tetrahedron,
and Sit are the surfaces of the spherical triangle for spheres i equal to

Sti = α + β + γ−πð Þr2i ; ð11Þ

with

α = arccos
cos a−cos b cos c

sin b sin c

# $
; ð12Þ

β = arccos
cos b−cos c cos a

sin c sin a

# $
; ð13Þ

γ = arccos
cos c−cos a cos b

sin a sin b

# $
: ð14Þ

In Eqs. (12)–(14), a, b, c are the three circular arc lengths that
result from the intersection of a tetrahedron with a sphere placed at a
vertex (spherical triangle, see Fig. 3(b)).

In the last step (step 7b), referred to in search of void spaces, the
Delaunay triangulation and the void filling (see Fig. 3) are iteratively
applied to make the packing denser. If these iterations are repeated
until no more sphere can be added, the maximum solid fraction,
according to the chosen radius range, will be reached. However, the
user can define a stop criterion based on a target solid fraction ϕ0 or a
total number of spheres N0 in the packing. These criteria must be
checked during the iterative filling procedure because the parameters
ϕ and N evolve very quickly. The search for void spaces is usually
applied to the whole packing but it can also be applied only to a given

Fig. 1. The different steps of the packing method.

Fig. 2. Placement of the virtual spheres. (a) The triangular faces that belong to only one
tetrahedron are marked as boundary faces. (b) Outgoing normal is computed for each
boundary face by using the position of the fourth sphere. (c) The virtual spheres are
added outside the borders, at the nodes and the center of the face (not shown for sake of
readability), taking care that they are not duplicated.
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region. By defining different regions with different solid fractions it is
thus possible to obtain a gradient of density (solid fraction).

3. Characterization

In this section, we first characterize the structure of the generated
assemblies. The method efficiency is then presented.

3.1. Packing properties

To characterize the packing, we introduce different geometric
properties. The mean number of contacts per sphere, namely the
coordination number z, relates to the connectivity:

z =
1
N

∑
N

i=1
zi; ð15Þ

where N is the total number of spheres in the packing, and zi is the
local number of contacts for the sphere i. The filling rate is defined by
the solid fraction ϕ calculated in a spherical probe:

ϕ =
1
Vp

∑
N

i=1
χiVi; ð16Þ

where Vp is the volume of the spherical probe, and χia [0,1] is the
volume fraction of the sphere i contained inside the probe. We
generally observed that the coordination number z is correlated with
the solid fraction ϕ in a granular packing. The generated packing must
satisfy this observation. Fig. 4(a) shows the maximum solid fraction
and coordination number obtained for six radius ratios R=rmax/rmin

(from 2 to 7) generated from the same meshed cube composed of
1112 tetrahedra. We notice that geometrically generated assemblies
obey the expected correlation between ϕ and z. The high coordination
number is induced by the geometric procedure which ensures that no
free sphere (i.e. sphere without contact) exists. A picture of the
densest packing (R=7) is depicted in Fig. 5 (b).

The algorithm is also able to generate very loose packing (ϕ≃0.46)
with different sphere size distribution, while keeping a high enough
coordination number (z≃4.75). This is shown in Fig. 4(b) where
different radius ratios were used to generate sphere packings with a
target solid fraction of 0.46. This value is very low and using only
friction contact in a DEM simulation should not be sufficient to
maintain this low density at a stabilized state. In comparison, a
random loose packing gives a solid fraction ϕ≃0.58. Fig. 5 (a) shows
the loosest packing obtained with R=2.

In polydisperse sphere packings generated by DEM computation for
example, strong forces (i.e. larger than the mean force) are preferen-
tially supported by large particles [43]. Most of the other particles
transmit weak forces that hold up the strong network of forces. It is
important that larger spheres are interconnected in the generated
packings, because this corresponds to a state naturally reached when
mechanical forces are taken into account.We checked this feature of the
connectivity in the generated packing by defining a partial coordination

Fig. 3. Detection and reduction of void space in a tetrahedron formed by four spheres. (a) Tetrahedral mesh created by the Delaunay algorithm on the four spheres in the stack.
(b) Representation of a spherical triangle on a sphere placed at the tetrahedron vertex. (c) Positioning of a sphere in contact (with at least zmin contacts) with four neighboring
spheres to fill the empty space.

Fig. 4. A solid fraction ϕ and coordination number z as a function of the radius ratio R.
The filling procedure was stopped when (a) nomore sphere could be added, and (b) the
targeted solid fraction ϕ0 was reached.
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number z(ξ) for sphere radii greater than rmin+ξ(rmax−rmin), where
ξa [0, 1]. In other words, z(ξ) corresponds mean number of contact per
particle when the smaller spheres (rbξ) are taken off. With this
definition, the total coordination number of the sample is z(ξ=0). Fig. 6
shows the partial coordination number together with the probability
distribution function (pdf) of the sphere radii for a loose and a dense
packing.We can see that the partial coordination number reaches a zero
value only for ξ≳0.9, which corresponds in fact to a very small amount
of spheres as shown by pdf. Larger spheres in significant amounts (i.e.
0.6bξb0.9) are indeed interconnected, which shows that they are not
isolated and correspond to a realistic situation.

The morphology of the contact network in an assembly can be
quantified by the fabric tensor. This tensor characterizes the
distribution of contact orientations. We consider here the second
order fabric tensor F the components of which are given by:

Fαβ =
1
Nc

∑
Nc

c=1
nc
αn

c
β; ð17Þ

where Nc is the number of contacts in the test volume V, nc is the unit
vector of the contact c, and α and β are the spatial directions. The
eigenvalues (F1, F2 and F3) of the tensor quantify the anisotropy of the
structure. A non-ordered assembly can be considered as isotropic
when F1, F2 and F3 are all equal to 1/3. These eigenvalues, shown in
Fig. 7(a), are almost equal with an accuracy of ±0.02 in the worst case
(R=2) where the possibilities of adding new spheres are limited. For
the other cases (R≥3), equal values are observed with an accuracy of
±0.01. It will be noted in the following that a packing is not ordered
for R≥3, which means that it is isotropic when F≃ 1= 3ð ÞI, where I is
the unit tensor.

One might think intuitively that the isotropy of the packing is
directly derived from the isotropy of the mesh. To test this, we
stretched a mesh by multiplying the z components of the nodes by a
factor 3. The resulting packing was still isotropic, which means that
the mesh anisotropy does not influence the packing isotropy.

The organization of the packing can be described by means of a
radial distribution function g(r), where r is the inter-center distance.
This function gives statistical information on how the spheres are
radially packed around each other.More precisely,we can think of it as
the average number of spheres found at a given inter-center distance
in all directions. A typical shape of g(r) is shown in Fig. 7(b) for quasi-
monodisperse assembly (R=1.5). At a short distance (less than the
mean diameter) the function g(r) is zero because two particles cannot
occupy the same space. A first peak corresponding to the spheres in
contact appears at a distance r close to the mean diameter 〈d〉 of the
spheres. It is followed by other peaks that become less and less
marked. At long distance, g(r) approaches the value 1, which indicates
there is no long-range order. We observe a softening of the first peak
when the ratio or the solid fraction is increased (Fig. 7(b)). Similar

Fig. 5. Examples of generated dense packings for (a) R=2, and (b) R=7.

Fig. 6. Partial coordination number z(ξ) and probability distribution function (pdf) of
sphere radii for a loose (ϕ≃0.46) (a) and a dense (ϕ≃0.75) (b) packing with the radius
ratio R=7.
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observations were made with a packing generated from stretched
tetrahedra. The analysis of the radial distribution function shows that
the packing generated with the method are never ordered even if the
chosen size ratio is close to 1.

3.2. Efficiency of the packing generation

Until now, we have focused on the packing properties. It is also
interesting to characterize the duration of the packing generation. The
prototype version of the method was developed with the interpreted
language MATLAB® [27]. The packings were already more efficient
than those found in dynamic methods. The current C++ version is
drastically faster (duration can be divided by 25 in the worst cases).
The time evolves linearly with the number of tetrahedral meshes as
shown in Fig. 8(a) where the target solid fraction ϕ0 was fixed to 0.6.
However, the computation time becomes exponential for high values
of the solid fraction (ϕ0≳0.68) up to a limit value depending on the
radius ratio; Fig. 8(b).

Fig. 8(c) synthesizes this information with a color-map of the
computation time displayed in the parameter space (ϕ−R). The
packings were done starting with a mesh of 1040 tetrahedra with
almost identical sizes. We distinguish four different regions. Region 1
represents the combinations of parameters (ϕ−R) that cannot be
used. In other word, no packing can be generated with parameters
picked in this region. Region 2 shows the values of ϕ and R that
provide a linear computing time. In region 3, the computing time
evolves exponentially as a function of ϕ. As in region 1, region 4
corresponds to packings that cannot be made directly, but the
cancellation of some preliminary steps allows the algorithm to obtain
these low values of ϕ. Besides, the solid fractions around 0.46 shown
in Fig. 4 were obtained in this way by suppressing steps 5 and 6.

It is important to note that Fig. 8 (c) gives only an approximate
definition of the four regions. Indeed, the boundaries of regions may
slightly move depending on the mesh. For example, the higher solid
fractions obtained from two different tetrahedral meshes are
represented both on Figs. 8(c) and 4 (a), and we can observe that
the values are only slightly different.

4. Examples and extensions

As stated in the introduction, the DEM can be used with
appropriate force-laws to model continuous materials from a non-
damaged state up to its complete failure. The discrete element
approach is used with the hope of taking into account crack
initiations, propagations, bifurcations and interactions. Besides for-
mulating the correct interaction forces between elements, the first

Fig. 7. (a) Eigenvalues of the fabric tensor (F1bF2bF3) as a function of the radius ratio R.
The dashed line corresponds to the perfectly isotropic case (F1=F2=F3=1/3).
(b) Radial distribution function g(r) for different packings.

Fig. 8. Main features of the packing process duration. (a) Linear evolution of the computation time as a function of the number of tetrahedral meshes Nt. (b) First linear, then
exponential, evolution of the computation time as a function of the solid fraction ϕ. (c) A map of the computing time in the parameter space (ϕ−R).
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critical point is to generate a set of discrete elements which is
representative of the problem. This generally covers three things: the
size of the medium, its internal organization and its boundary
conditions. These criteria often involve a very time consuming initial
packing generation step, and the fast generation algorithm presented
here would be a useful tool for engineers and researchers. To illustrate
the capabilities of this algorithm to tackle the previous points,
examples are presented in the following subsections.

4.1. Large scale structures

As a first illustration of the need for a large size medium, mining
excavation is an applied domain for which large scale simulation is
important because it involves large discontinuous deformations of the
rock mass. For example, in large open pit mines, features such as faults
are relatively widely spaced and continuous along strike and dip across
the entire mine site. In addition, closely spaced joints and faults that
typically do not extend for more than a bench can be found. Thus, there
is a need to develop 3D numerical models that can cover these different
scales of discontinuities. Using the DEM, it is possible to model the
strength of the intact rock and joint fabric within the rock bridges that
may occur along a candidate failure surface in a closely jointed rock
mass. Then, the brittle fracture that can propagate across the joint fabric
within the rock bridges as the rock mass deforms, can be reproduced.
However, if this mechanical description is valuable because of the local
insight on instabilities that it provides, the geometrical representation of
the medium is of utmost importance, since it composes the structural
framework of the deformation process. The packing tool presented in
thiswork can be used to represent the rockmass as a dense collection of
discrete elements,whichwill be bonded together in theDEMcodeYADE
[19]. An example of this applied 3D packing, Fig. 9 shows how a million
spheres can be packed in a few minutes on a basic PC, to represent a
portion of an open pit.

4.2. Composite material

One of the best known composite materials is reinforced concrete.
Its behavior is greatly influenced by the coupled effect of the rebars
with the surrounding concrete matrix. An advanced modeling of
steel–concrete composite beams requires the explicit introduction of
local interaction phenomena [8,26], since adhesion and friction
between concrete and the steel surface play a major role. In DEM,

Fig. 9. Amillion spheres have been densely packed to represent a portion of an open pit
mine, with two benches. The dark line corresponds to a fault and the colored speckles to
joints.

Fig. 10. A million spheres have been densely packed to represent a reinforced concrete slab. Both the concrete and the reinforcements are modeled by discrete spherical elements.
Cutting was done to ease the visualization of the reinforcements.
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the reinforcement is introduced in the model as lines of elements
placed next to each other [23,37]. The diameter of the elements is that
of the real reinforcement and ad hoc local behavior can be considered
(generally elastic, perfectly plastic). The modeling of the steel-
concrete interface by discrete elements means the definition of a
particular interaction force between a steel element and a concrete
element and because the reinforcement bar creates a privileged
direction for rupture, the formulation of such interaction lawsmust be
carefully chosen [34]. As an example of the geometrical set up of a
reinforced concrete medium, a reinforced concrete slab obtained with
the packing algorithm is presented in Fig. 10. Different basic steps are
used to build such a structure. First a dense polydisperse sphere
packing is obtained by using steps 1 to 5 of Section 2.2 (see Fig. 10(a)).
After these spheres positioned, additional spheres that constitute the
reinforcement structure are added (see Fig. 10(b)). Then, spheres that
overlap the added spheres are removed just before the searching for
void spaces begins. This last step ensures that the contact exists
between the reinforcements and the concrete. Doing so a structure
with one million spherical elements can be generated on a regular PC
(see Fig. 10(c)).

4.3. Complex geometry

In the third example, we show that the method can accurately
reproduce a complex geometry. We choose for this purpose, the case
of a porous ceramic used for bone remodeling.

The study of ceramic behavior is a growing research field for a
wide range of applications (e.g., biomaterials, powders) and recent
advancements enable the production of submicrometer-grained
ceramics which are free of impurities and amorphous phases at the
grain boundaries. Despite these advancements, extensive use of
ceramics is still limited because of their low fracture toughness.
Therefore, it is essential to gain a thorough understanding of the
fracture process at the microscopic level together with its relation to
macroscopic behavior of the material.

A small part of this biomaterial was scanned by X-ray tomography.
The resulting micro-structure is shown in Fig. 11(a). A tetrahedral
mesh has been obtained by a tomographic reconstruction technique
(Fig. 11(b)). Then, spheres are packed onto this mesh Fig. 11(c) and
the DEM can be applied to study initiation and propagation of cracks
within this biomaterial. In this case, the large assembly of spheres is
obtained quickly (e.g. 1000 spheres per second with a pentium
2.33 GHz, see Fig. 8).

5. Conclusion

A new geometric packing method has been presented. It uses
tetrahedral mesh to build an isotropic packing of polydisperse spheres
in a short computation time. The generation procedure is very flexible
in the sense that the packings can be loose or dense, with high or low
connectivity according to wisely chosen parameters. The filling

procedure is mainly based on a fast geometric procedure to insert a
fifth sphere into the void space between four neighboring spheres.
The void spaces are first located by using the tetrahedral mesh. The
packing density is then increased by filling the void spaces detected by
applying a Delaunay triangulation on the sphere centers. Because the
new geometric algorithm is coded in C++, it is extremely fast which
is due to the use of the very efficient computational geometry
algorithm library (CGAL). The method has shown its efficiency when
applied to real test cases such as modeling an open-pit mine slope, a
reinforced concrete slab and a porous structure scanned by X-ray
tomography.
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