
doi: 10.1098/rsta.2009.0185
, 5123-5138367 2009 Phil. Trans. R. Soc. A

 
Farhang Radjai and Vincent Richefeu
 
materials
Bond anisotropy and cohesion of wet granular
 
 

References
l.html#ref-list-1
http://rsta.royalsocietypublishing.org/content/367/1909/5123.ful

 This article cites 32 articles

Rapid response
1909/5123
http://rsta.royalsocietypublishing.org/letters/submit/roypta;367/

 Respond to this article

Subject collections

 (50 articles)mechanics   �
 
collections
Articles on similar topics can be found in the following

Email alerting service  herein the box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up

 http://rsta.royalsocietypublishing.org/subscriptions
 go to: Phil. Trans. R. Soc. ATo subscribe to 

This journal is © 2009 The Royal Society

 on 16 November 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/content/367/1909/5123.full.html#ref-list-1
http://rsta.royalsocietypublishing.org/letters/submit/roypta;367/1909/5123
http://rsta.royalsocietypublishing.org/cgi/collection/mechanics
http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;367/1909/5123&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/367/1909/5123.full.pdf?ijkey=4YU2RiJKfH0uhQ7&keytype=finite
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


 on 16 November 2009rsta.royalsocietypublishing.orgDownloaded from 
Phil. Trans. R. Soc. A (2009) 367, 5123–5138
doi:10.1098/rsta.2009.0185

Bond anisotropy and cohesion of wet
granular materials

BY FARHANG RADJAI1,* AND VINCENT RICHEFEU2

1LMGC, CNRS-Université Montpellier 2, Place Eugène Bataillon,
34095 Montpellier, Cedex 5, France

2L3S-R, Domaine Universitaire, BP 53, 38041 Grenoble, Cedex 9, France

We analyse the Coulomb cohesion of wet granular materials and its relationship with
the distribution of capillary bonds between particles. We show that, within a harmonic
representation of the bond and force states, the shear strength can be expressed as a
state equation in terms of internal anisotropy parameters. This formulation involves a
dependence of the shear strength on loading direction and leads to the fragile behaviour
of granular materials. The contact dynamics simulations of a wet material, in which a
capillary force law is prescribed, are in excellent agreement with the predictions of this
model. We find that the fragile character decreases as the local adhesion is increased or
the mean stress is decreased.

Keywords: granular matter; capillary bond; shear strength; Coulomb cohesion;
jamming; fragile behaviour

1. Introduction

Wet granular materials in the pendular state are characterized by a network of
liquid bonds inducing capillary attractive forces between neighbouring particles.
This network is equilibrated by repulsive contact forces and endows the material
with overall capillary cohesion (Fournier et al. 2005). Capillary cohesion has been
widely investigated for its crucial role in the flow and mixing properties of granular
materials. Wet processing is common in powder technology for operations such as
granulation, extrusion and compaction (Bika et al. 2001; Forrest et al. 2002). In
the same way, the cohesion of unsaturated soils is a fundamental parameter for
construction environments such as embankments and excavations (Kim & Hwang
2003; Liu et al. 2003; Jiang et al. 2004).

The capillary force between two particles results from (i) the surface tension at
the contact line between the liquid and the particles and (ii) the suction pressure
difference due to the curvature of the liquid bridge. The pendular state represents
both the simplest topology of the liquid phase and the highest level of capillary
cohesion. Cohesion is absent at very low liquid content, and rises to an almost
constant value as a function of liquid content for liquid volume fractions in the
range 1–3% (Iveson et al. 2002). This plateau cohesion has been evidenced for
*Author for correspondence (radjai@lmgc.univ-montp2.fr).
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various materials and liquids (Pierrat & Caram 1997; Richefeu et al. 2006; Soulié
et al. 2006; Moller & Bonn 2007). At larger liquid contents, liquid clusters are
formed in the packing with increasingly lower liquid–gas interfacial energy and
hence lower overall cohesion (Fournier et al. 2005).

An interesting issue is how capillary cohesion depends on bond force and
granular microstructure. Assuming the Mohr–Coulomb model, cohesion is given
by the product of tensile strength and internal friction coefficient. The most
widely cited expression of tensile strength was formulated by Rumpf (1970).
This expression has often been found to be plausible in view of experimental
measurements and numerical simulations (Pierrat & Caram 1997; Gröger et al.
2003; Kim & Hwang 2003). It correctly predicts that tensile strength varies in
inverse proportion to particle size and in direct proportion to solid fraction and
bond coordination number, which are the only structural parameters involved
in this model. An expression of Coulomb cohesion based on a variant of
Rumpf’s expression taking into account polydispersity was also found to be in
good agreement with numerical and experimental data (Richefeu et al. 2006).
However, the distribution of capillary bridge volumes and coordination numbers,
involved in those expressions, has only recently been investigated by rigorous
experimental methods as a function of liquid content (Kohonen et al. 2004;
Fournier et al. 2005).

In this paper, we introduce a somewhat different picture of the cohesion
of granular materials. The point is that Coulomb cohesion is a part of the
plastic yield state of a granular material, and in this sense it is a function of
the internal parameters pertaining to granular microstructure (Roux & Radjai
2001). In other words, cohesion is a state-dependent property and a material
should be characterized by its state of cohesion. In particular, it depends
not only on the connectivity of the bond network, as a scalar parameter,
but also on its anisotropy, which depends on the preparation process and
evolves during shear. The internal angle of friction and cohesion are often
attributed either to the stress peak state or to the critical state reached at
large shear strains. Even at these particular states, the anisotropy of the bond
network implies that the cohesion and internal friction angle are not isotropic
properties but dependent on space direction (Radjai et al. 2004). For example,
the cohesion changes as the shear strain is reversed, a property that is akin
to the fragile behaviour, defined as the resistance of a material only to a
set of compatible stresses, basically those applied during its past deformations
(Cates et al. 1998).

In the following, we first present a model of the capillary bond force in §2
and briefly discuss its properties. Since we are interested in the relationship
between Coulomb capillary cohesion and granular microstructure, we introduce
in §3 a state equation for the cohesion of a granular material within the harmonic
representation of the fabric and force states. In §4, we show that the predictions
of this equation are in good agreement with contact dynamics (CD) simulations
for both cohesive and cohesionless materials. This equation implies a fragile
behaviour that will be investigated as a function of the bond force. In §5,
we derive an expression of the critical-state Coulomb cohesion as a function of
the extra force and fabric anisotropies due to cohesion, and show that it nicely
fits the numerical data. We conclude with a summary and possible extensions
of this work.
Phil. Trans. R. Soc. A (2009)
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2. Capillary cohesion

(a) Capillary bond force

The capillary force f c
n between two spherical particles of radii Ri and Rj acts

along the axis joining the particle centres. It is a function of the liquid surface
tension γ , the gap δn , the liquid bond volume Vb and the particle–liquid–gas
contact angle θ (figure 1a). The capillary force can be obtained by integrating
the Laplace–Young equation (Lian et al. 1993; Mikami et al. 1998; Soulié et al.
2006). Three examples are shown in figure 1b for different values of the bond
volume Vb and size ratio r = max{Ri/Rj ; Rj/Ri}. These data are nicely fit to an
exponential form (Richefeu et al. 2007)

f c
n = −κRe−δn/λ, (2.1)

where R = √
RiRj is the geometrical mean of particle radii and λ is a length scale

characterizing the exponential fall-off (see below).
The parameter κ in equation (2.1) is given by (Willett et al. 2000; Bocquet

et al. 2002)
κ = 2πγ cos θ , (2.2)

and δmax
n is the debonding distance given by (Lian et al. 1998)

δmax
n =

(
1 + θ

2

)
V 1/3

b . (2.3)

The capillary bridge is stable for δn < δmax
n . The prefactor κR characterizes the

highest value of the capillary force, occurring at contact (δn = 0).
The length λ is expected to depend on the liquid volume Vb, a reduced radius

R′ and the ratio r . A dimensionally simple choice is

λ = α h(r)

(
Vb

R′

)1/2

, (2.4)

where α is a constant prefactor, h is a function of the ratio r and R′ is the
harmonic mean (R′ = 2RiRj/(Ri + Rj)). When introduced in equation (2.1), this
form yields a nice fit to the capillary force obtained from direct integration of
the Laplace–Young equation by setting h(r) = r−1/2 and α � 0.9; see figure 1b.
Figure 1c shows the same plots for forces normalized by κR and the lengths by λ.
We see that all the data collapse on the same plot, indicating that the force κR
and the expression of λ in equation (2.4) describe correctly the capillary bond
force. We checked that the geometric mean R = √

RiRj introduced in equation
(2.1) provides a better fit than the harmonic mean 2RiRj/(Ri + Rj) proposed by
Derjaguin for polydisperse particles in the limit of small gaps (Israelachvili 1993).

Force law (2.1) was implemented in a molecular dynamics software and used
to investigate the shear behaviour and force distributions in three-dimensional
packings of spherical particles (Richefeu et al. 2006, 2007). By homogeneously
distributing the liquid among all eligible pairs of neighbouring particles (within
the debonding distance and including interparticle contacts) in a weakly
polydisperse packing, it was found that 85 per cent of capillary bonds occur
Phil. Trans. R. Soc. A (2009)
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Figure 1. (a) Geometry of a capillary bridge; (b) capillary force f c
n as a function of the gap δn

between two particles for different values of the liquid volume Vb and size ratio r (solid lines), and
from direct integration of the Laplace–Young equation (open circles); and (c) scaled plot of the
capillary force as a function of gap from the direct data shown in (b). (b,c) Triangle, Vb = 1 nl,
r = 1; circle, Vb = 10 nl, r = 1; square, Vb = 10 nl, r = 2.

at the true contact points, the other bonds being stretched and mostly carrying
small tensile forces. This means that the capillary bond force can be plausibly
approximated by an adhesion force

fa = 2πγ
√

RiRj cos θ (2.5)
Phil. Trans. R. Soc. A (2009)
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acting exclusively at the contact points between particles. It is also remarkable
that fa does not depend on the bridge liquid volume so that increasing the liquid
content in the pendular state affects mainly the proportion of liquid bonds in
the bulk up to a maximum that slightly depends on the solid fraction. The fact
that the distribution of liquid bonds is strongly coupled with the contact network
explains the presence of a plateau state.

The capillary attraction forces induce a network of self-stresses with a
bipolar structure that was evidenced by numerical simulations in the absence
of external stresses (Richefeu et al. 2007). When external (boundary or bulk)
forces are applied, the mechanical effect of cohesive bonds depends on the relative
importance of internal (tensile) and external (compressive) stresses (Radjai
et al. 2001; Gilabert et al. 2007). In other words, the mechanical behaviour
is expected to depend only on the ratio of fa to the reference compressive
force p dD−1 simply defined from the mean compressive stress p, the mean
particle size d and space dimension D. Thus, the relevant local parameter for
a cohesive granular material, irrespective of the origin of the threshold adhesion
force fa, is

η = fa
p dD−1

. (2.6)

We will refer below to this parameter as adhesion index. For millimetre-size grains
at the free surface of a humid beach sand, the typical compressive force is the
grain weight mg and we have η � 5. This is a large adhesion index that underlies
the stability of sand castles.

(b) Coulomb cohesion

The macroscopic cohesion c is defined by the Mohr–Coulomb criterion, which
is a linear relation between the normal stress σn and the shear stress σt (figure 2).
The slope is the internal friction coefficient μ = tan ϕ and the Coulomb cohesion
c is the shear stress at zero normal force. Plastic deformation occurs when
in a plane across the material the condition |σt | = μ|σn | + c is fulfilled. This
condition can be formulated in terms of the stress invariants. Let σ be the
stress tensor, and σ1 and σ2 = σ3 the principal stresses under axial symmetry
for simplicity. We have p = (σ1 + 2σ2)/3 and we set q = (σ1 − σ2)/3 as the single
non-zero stress deviator due to axial symmetry. Then, it can easily be shown from
the Mohr–Coulomb yield criterion that the relative stress deviator q/p at yield
is given by

q
p

= 2
3 − sin ϕ

(
sin ϕ + c

p
cos ϕ

)
in three dimensions. (2.7)

In two dimensions, we have q = (σ1 − σ2)/2 and p = (σ1 + σ2)/2, and we get

q
p

= sin ϕ + c
p

cos ϕ in two dimensions. (2.8)

As for the local adhesion, the state of cohesion in a granular material
is not characterized by only the macroscopic cohesion c but rather by the
ratio c/p, which appears at the same level as sin ϕ is in expressions (2.7)
Phil. Trans. R. Soc. A (2009)
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Figure 2. A snapshot of the force network in a portion of a cohesive sample. Line thickness is
proportional to the magnitude of the normal force. The tensile and compressive forces are in black
and grey, respectively.

and (2.8) and which is linked with the internal state parameters, as we shall
see below. We will also see that the critical-state value of c/p is a nonlinear
function of η.

3. Force and fabric states

(a) Stress tensor and state parameters

In order to describe the state of cohesion, we need a representation of the internal
states pertaining to the microstructure and force transmission in a granular
material. The classical expression of the stress tensor σ contains the necessary
information. Let f α be the contact force at the contact α between two particles
and �α the branch vector joining the particle centres. The stress tensor is given
by (Rothenburg & Bathurst 1989; Cambou 1993; Ouadfel & Rothenburg 2009)

σij = nb 〈�α
i f

α
j 〉α, (3.1)

where nb is the number density of the bonds and 〈. . .〉α designates averaging over
all bonds inside a control volume. This expression shows clearly that the stress
tensor is a function of state for a granular material when the internal state is
represented by the set {f α, �α}.

In practice, however, we need a statistical description due to granular disorder.
In a statistical approach, the internal state is represented by the joint probability
density function P�f (�, f ) of bond forces and branch vectors, and the stress tensor
Phil. Trans. R. Soc. A (2009)
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can be expressed by an integral

σij = nb

∫
A�

∫
Af

�i fj P�f (�, f ) d� df , (3.2)

where A� and Af are the integration domains of � and f , respectively.
At this stage, it is convenient to consider the force components fn and

ft in the local reference frame (n, t), where n is the unit vector along the
branch vector such that � = �n, and t is an orthogonal unit vector. We have
f = fn n + ft t. We also define the functions P(n), 〈fn〉(n), 〈ft〉(n) and 〈�〉(n) by
the following relations:

P(n) =
∫∞

�=0

∫
Af

P�f (�, f ) d� df ,

〈�〉(n)P(n) =
∫
Af

� P�f (�, f ) df ,

〈fn〉(n)P(n) =
∫∞

�=0

∫
Af

fnP�f (�, f ) d� df

and 〈ft〉(n)P(n) =
∫∞

�=0

∫
Af

ftP�f (�, f ) d� df .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

The function P(n) is the probability density function of the branch vector
orientations (coinciding with the contact normals in the case of spherical particles
or discs). Integrating (3.2) with respect to the force and considering definitions
(3.3), we get

σij = nb

∫
Ω

〈�〉(n)P(n)
{〈fn〉(n) ni(n) + 〈ft〉(n) tj(n)

}
dn, (3.4)

where Ω is the angular domain of integration.

(b) Harmonic approximation

The information contained in the functions P(n), 〈fn〉(n), 〈ft〉(n) and 〈�〉(n) is
still too rich to be tractable experimentally or theoretically. In general, however,
as a result of granular disorder, steric exclusions and mechanical equilibrium,
these functions cannot take arbitrary form. It is usually observed that they can
be approximated by low-order terms of spherical harmonics in three dimensions
and Fourier series in two dimensions (Rothenburg & Bathurst 1989; Cambou
1993). To avoid unnecessary complication, we consider here a two-dimensional
packing of discs and expand these functions in Fourier series truncated beyond
the second order as a function of the orientation θ of n:

P(θ) � 1
2π

{1 + ab cos 2(θ − θb)},
〈�〉(θ) � �m{1 + a� cos 2(θ − θb)},
〈fn〉(θ) � fm{1 + an cos 2(θ − θf )}

and 〈ft〉(θ) � fm at sin 2(θ − θf ).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.5)
Phil. Trans. R. Soc. A (2009)
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In this approximation, the state is characterized by the average branch vector
length �m , the fabric or bond anisotropies ab and a�, the bond privileged
direction θb, the average force fm , the force anisotropies an and at and the
force privileged direction θf . We must add the coordination number z or the
bond number density nb that appears in the prefactor to (3.4). The sine
function for the expansion of the orthoradial component 〈ft〉(θ) is imposed by
the requirement that the mean orthoradial force is zero, satisfying the balance of
force moments on the particles (

∫
P(θ)〈ft〉(θ) dθ = 0). We will refer to the above

expansions and the corresponding state parameters as a harmonic approximation
of the granular state.

It should be remarked that part of the information involved in the angular force
distributions is redundant since for a mean stress state σ the contact forces can be
partially determined for the specified contact network by means of the force and
moment balance conditions up to some degree of indeterminacy resulting from
the assumption of perfect particle rigidity and Coulomb friction law (Snoeijer
et al. 2004). However, the contact forces reflect subtle features of the granular
microstructure that are more evident to observe through the force network. The
surprising inhomogeneity of the force chains could hardly be guessed just from
the appearance of the contact network. The inclusion of the forces in the state is
therefore a genuine choice in view of taking advantage of the well-known proper-
ties of the force network. Owing to their connection with the microstructure, the
forces represent the state of the microstructure and, in the last analysis, can be
considered as fabric parameters for a given material. On the other hand, a proper
sampling of the forces in regular and irregular grain configurations suggests that
the behaviour of the statistical distribution of forces in the range of weak forces
is correlated with shear-induced force anisotropy (Snoeijer et al. 2004).

(c) State equations and fragile behaviour

Inserting Fourier expansions (3.5) in equation (3.4) and integrating with
respect to θ , we arrive at the following relations for the stress state:

p � 1
2
nb�mfm (3.6)

and
q
p

cos 2θσ � 1
2

{
(ab + a�) cos 2θb + (an + at) cos 2θf

}
, (3.7)

where θσ is the major principal stress direction and the cross products among the
anisotropies have been neglected. The same relations hold also in three dimensions
under axial symmetry, with the factor 1/2 replaced by 1/3 in equation (3.6) and
by 2/5 in equation (3.7) (Azéma et al. 2009). The two relations (3.6) and (3.7)
are state functions of a granular assembly in the thermodynamic sense in the
framework of harmonic approximation.

Equation (3.7) reveals an important property of granular plasticity: the shear
strength q/p reflects the ability of a granular system to develop force and bond
anisotropies. This aspect was first demonstrated many years ago by Rothenburg &
Bathurst (1989). Except in transients, the fabric and force states are co-axial
with the stress state so that θb = θf = θσ . As a result, we have q/p � 0.5(ab + a� +
an + at) during a monotonic deformation. The anisotropy a� of the branch vector
Phil. Trans. R. Soc. A (2009)
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lengths can be small but takes non-negligible values for polydisperse systems and
non-spherical particles (Voivret 2008; Azéma et al. 2009). The relative values of
the other anisotropies depend on the composition (shape and particle sizes). It is
also important to remark that q/p does not directly depend on the coordination
number z , which reflects the compactness of the material.

Here, we underline another important property resulting from the phase
differences θσ − θb and θσ − θf in equation (3.7). Owing to the phase factors, the
shear strength q/p depends on the loading direction. For example, the shear stress
is q1/p � 0.5(ab + a� + an + at) for θσ = θf = θb and q2/p � 0.5(−ab − a� + an + at)
for θσ = θf = θb + π/2. This corresponds to a difference of strength of the order
of ab + a� between the two directions. As a result, it is expected that when the
loading direction θσ is reversed (i.e. for a rotation of π/2 of the applied stress
directions), the phase factor cos 2θσ changes sign as well as cos 2θf , which reacts
immediately to the stress, but cos 2θb does not react instantly since the evolution
of the bonds requires particle rearrangements. Therefore, a discontinuous loss of
strength occurs during such transients. This property is akin to fragile behaviour
(Cates et al. 1998). Here, we have a clear formulation of this property, which can
be formulated in a weaker form by stating that the largest strength occurs along
the loading path that conducted the system to its present state. In the following,
we illustrate these developments by means of discrete element simulations.

4. Numerical simulations

(a) Contact dynamics method

For the simulations, we used the CD method. This method is based on implicit
time integration and non-smooth formulation of mutual exclusion and dry
friction between particles (Jean & Moreau 1992; Moreau 1994; Radjai 1999;
Radjai & Richefeu 2009). The equations of motion are formulated as differential
inclusions in which velocity jumps replace the accelerations. The unilateral
contact interactions and Coulomb friction law are represented as set-valued force
laws. The implementation of the time-stepping scheme requires the geometrical
description of each potential contact in terms of contact position and its normal
unit vector.

At each time step, all kinematic constraints implied by enduring contacts are
simultaneously taken into account together with the equations of motion in order
to determine all velocities and contact forces in the system. This problem is
solved by an iterative process pertaining to the nonlinear Gauss–Seidel method
that consists of solving a single contact problem, with other contact forces being
treated as known, and iteratively updating the forces until a given convergence
criterion is achieved. The method is thus able to deal properly with the non-local
character of the momentum transfers resulting from the impenetrability of the
rigid particles and friction law.

The CD method is unconditionally stable due to its inherent implicit time
integration method. The uniqueness of the solution at each time step is not
guaranteed for perfectly rigid particles. However, by initializing each step with
the forces calculated in the preceding step, the variability of admissible solutions
shrinks to the numerical resolution.
Phil. Trans. R. Soc. A (2009)
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In the simulations presented in this paper, the bond capillary force was taken
into account only at the contact points between the particles as an attractive force
given by equation (2.5) added to each contact. The total force at each contact
results from the procedure briefly presented above in the presence of the attractive
bond forces as well as other bulk and boundary forces acting on the system. As
stated before, our three-dimensional simulations with the full capillary law and
an even distribution of the liquid bonds within the debonding distance indicate
that the effect of stretched bonds (gap bridges) is marginal (Richefeu et al. 2006).

(b) Samples and material parameters

The numerical samples are composed of 5000 discs of diameters in a range
[dmin, dmax] with dmax = 2dmin. The samples are isotropically compacted with
friction and at zero gravity inside a rectangular box in which the bottom and
left walls are immobile. We get an isotropic static sample of nearly square shape
and solid fraction �0.84 when the whole energy is dissipated by inelastic collisions
between the particles. In the CD method, the particles are perfectly rigid and the
only material parameters are the normal and tangential restitution coefficients,
set to zero in all simulations, and the coefficient of friction between the particles,
set to 0.5 at the beginning of shearing.

The samples were sheared by the downward motion of the top wall at constant
velocity vy and a constant confining pressure σxx applied on the right wall. The
vertical strain rate was ε̇yy � 0.02 s−1 and the corresponding inertial number
I ≡ ε̇yy

√
m/(σxxd) � 10−4. This is weak enough to consider the deformation as

quasistatic. The samples were sheared up to a total cumulative shear strain εq ≡∫
(ε̇yy − ε̇xx) dt = 0.28. Then, the simulation was stopped and a new simulation

was started by reversing the direction of motion of the top wall. This reverse
shearing was continued slightly below εq = 0.

The samples differed only in the value of the adhesion index η. We present
below the simulation results for six samples with η varying in the range [0, 4].

(c) Numerical results

Figure 2 shows a snapshot of the bond forces in a portion of a sheared cohesive
sample with η � 1.4. Only normal bond forces are represented by line thickness
and two grey levels differentiating the tensile and compressive forces. We observe
both compressive and tensile force chains, although compressive forces prevail as
the sample supports compressive stresses in both space directions.

The normalized stress deviator (q/p) cos 2θσ is displayed as a function of the
cumulative shear strain εq in figure 3 for a cohesionless and a cohesive sample,
together with the corresponding fits by state equation (3.7). The agreement
is excellent all along the shear path including the transient after shear strain
reversal. Starting with an initially isotropic system, the stress deviator increases
almost monotonically (ignoring small-scale fluctuations) with shear strain. In
the case of perfectly rigid particles, which is the case of our simulations, this
increase in shear resistance is a purely hardening effect. In other words, the initial
elastic regime generally observed in simulations with elastic contacts (by means
of other distinct element methods of ‘molecular dynamics’ type) is totally absent
from our results. Since the packing is initially dense, the stress ratio reaches
a peak before declining to its critical-state value (shear softening). Instead, in
Phil. Trans. R. Soc. A (2009)
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Figure 3. Normalized stress deviator (q/p) cos 2θσ as a function of the cumulative shear strain εq
together with the plot of expression (3.7). The latter has been slightly translated upward for a
better visibility of both plots. Black line, (q/p) cos 2θσ ; grey line, (1/2){(ab + al ) cos 2θb + (an +
at) cos 2θf }.
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Figure 4. Evolution of the total fabric anisotropy ab + a� and the total force anisotropy an + at in
the case of the cohesive packing of figure 3 (for η = 1.4). Solid line, (ab + al ) cos 2θb; dashed line,
(an + at) cos 2θf .

our system the stress deviator undergoes a huge jump over the first time step.
This is reminiscent of a rigid–plastic behaviour. However, particle rearrangements
take over afterwards and the behaviour is then governed by the evolution of the
microstructure. A similar jump also occurs at the moment of shear reversal, but
the particle rearrangements are again responsible for the long transient towards
the critical state in the new stress direction.

The stress–strain behaviour is basically similar in both cohesive and
cohesionless packings. The stress deviator is larger in the cohesive packing owing
to the action of tensile bonds. The fragile behaviour is apparent at shear reversal
where the stress deviator almost vanishes. As discussed previously, this is mainly
due to the responsive nature of bond forces. The evolution of the fabric and
force anisotropies is shown in figure 4 for the cohesive packing of figure 3. We
Phil. Trans. R. Soc. A (2009)
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Figure 5. Critical-state values of the stress deviator and anisotropy parameters as a function of
the adhesion index. The data are mean values in the critical state. The error bars represent the
standard deviation of the fluctuations around the mean. Filled circle, q∗/p; filled triangle, a∗

n ; filled
square, a∗

b ; open triangle, a∗
t ; filled diamond, a∗

l .

observe the slow evolution of the fabric anisotropy ab + a� both at the initial
state and upon strain reversal where a long transient occurs. In contrast, the force
anisotropy an + at undergoes a jump in both cases. This shows that the stress
peak occurring in an initially dense packing is a consequence of the spontaneous
buildup of force anisotropy in response to the applied stress. The degree of fragility
is related to the stress jump at strain reversal. If (q/p) cos 2θσ simply changes sign
in response to strain reversal while keeping the same amplitude, the packing is
not fragile as it resists shear in the new direction with the same strength as in
the initial direction. In all other cases there is some degree of fragility.

State equation (3.7) suggests that the fragile character should increase as
ab + a� decreases. The critical-state stress deviator q∗/p and the critical-state
anisotropies a∗

b , a∗
� , a∗

n and a∗
t are shown in figure 5 as a function of the adhesion

index η. In our system, a∗
� is nearly zero and a∗

b increases and saturates to a
constant value as a function of η. Hence, the fragile character of our packings
decreases slightly as the cohesion increases. In contrast, the force anisotropies
increase significantly with η, and are thus the main origin of the shear strength
in a cohesive granular material.

5. Coulomb cohesion in the critical state

The Coulomb cohesion c of a packing can be obtained from equation (2.8) at
any stage of evolution of a granular material if the corresponding internal friction
angle ϕ is known. In particular, the critical-state cohesion c∗ of a cohesive material
of cohesion index η in two dimensions is given by

c∗(η)

p
= 1

cos ϕ∗

(
q∗(η)

p
− sin ϕ∗

)
. (5.1)
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Figure 6. Critical-state cohesion c∗ and its theoretical expression (5.3) as a function of the adhesion
index η. The error bars correspond to fluctuations around the mean in the critical state. Dashed
line with filled circle, c∗/p; solid line with open circle, (1/2)(�a∗

b + �a∗
l + �a∗

n + �a∗
t ).

But ϕ∗ does not depend on the adhesion index and it represents the shear strength
in the absence of adhesion, i.e. for η = 0. Assuming that the phase differences
vanish in the critical state (θσ = θb = θf ), we have

sin ϕ∗ = 1
2

{
a∗

b (0) + a∗
� (0) + a∗

n(0) + a∗
t (0)

}
, (5.2)

where the argument refers to the value of η. In the same way, under the same
assumption, we have

q∗(η)

p
= 1

2

{
a∗

b (η) + a∗
� (η) + a∗

n(η) + a∗
t (η)

}
. (5.3)

Given expression (5.2), cos ϕ∗ is of second order with respect to
the anisotropies. But in deriving equation (5.2) the second-order terms
(cross products among the anisotropies) were neglected. Hence, within this
approximation, we set cos ϕ∗ � 1. As a result, from equations (5.1)–(5.3), we get
the following expression for the critical-state Coulomb cohesion:

c∗(η)

p
= 1

2

{
�a∗

b (η) + �a∗
� (η) + �a∗

n(η) + �a∗
t (η)

}
, (5.4)

where �a∗
b (η) = a∗

b (η) − a∗
b (0), �a∗

� (η) = a∗
� (η) − a∗

� (0), �a∗
n(η) = a∗

n(η) − a∗
n(0)

and �a∗
t (η) = a∗

t (η) − a∗
t (0). This equation is in excellent agreement with our

numerical simulations as displayed in figure 6. The four terms in equation (5.4)
represent the contribution of adhesion to the structural and force anisotropy.
Since c∗ is independent of p, this equation implies that these extra anisotropies
tend to zero when the mean stress p increases. From figure 5, we also see that
�a∗

n(η) � �a∗
t (η), and �a∗

b (η) is small and nearly constant beyond η � 1.
For a better understanding of the effect of adhesion, a particle-scale

interpretation of the behaviour of critical-state anisotropies is necessary.
Schematically, Coulomb cohesion results equally from two different mechanisms:
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(i) the stabilizing effect of the tensile bonds and (ii) the enhanced friction at the
compressive contacts. The parameter �a∗

n reflects the importance of force chains.
In a dry cohesionless packing, these chains are propped by the weak compressive
forces (Radjai & Wolf 1998; Radjai et al. 1998). The tensile bonds play a similar
role with respect to the force chains in the presence of cohesion (Radjai et al. 2001;
Richefeu et al. 2009). On the other hand, the parameter �a∗

t is basically an effect
of enhanced friction due to cohesion. Its increase with the cohesion index, in the
same proportion as �a∗

n , clearly shows this correlation.

6. Conclusion

The Coulomb cohesion of wet granular materials was analysed in this paper in
terms of the force and fabric anisotropies. It was argued that these anisotropies are
state parameters upon which the stress tensor depends. An expression of the shear
stress was derived in this framework for a harmonic representation of the states.
This expression was shown to be in excellent agreement with CD simulations of
biaxial compression tests both in monotonic deformation and during transients for
several values of the local adhesion. We showed that the fragile behaviour, defined
as the space-direction dependence of strength, is a consequence of the fabric
anisotropy and its effect increases with cohesion. We also derived an expression
for the critical-state cohesion, which is nicely fitted by the numerical data. The
evolution of the fabric and force anisotropies with the adhesion between particles
suggests that the tensile bonds and enhanced friction at compressive contacts are
equally at the origin of the Coulomb cohesion. However, more extensive numerical
investigation is required at this stage in order to fully validate this approach in
extreme situations such as tensile loading at negative confining stresses.

The framework presented in this paper provides a generic methodology for
the analysis of shear strength in granular materials. The influence of various
material parameters such as particle shape and size as well as particle interactions
can thus be described by considering each anisotropy parameter separately. Each
parameter affects the force and fabric anisotropies differently, and thus the shear
strength. In particular, an upper bound can be obtained for the shear strength
from the variability of each anisotropy parameter.
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