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SUMMARY

We present a 3D discrete-element approach for numerical investigation of wet granular media. This
approach relies on the basic laws of contact and Coulomb friction enriched by a capillary force law between
particles. We show that the latter can be expressed as a simple explicit function of the gap and volume of
the liquid bridge connecting a pair of spherical particles. The length scales involved in this expression are
analyzed by comparing with direct integration of the Laplace–Young equation. We illustrate and validate
this approach by application to direct shear and simple compression loadings. The shear and compression
strengths obtained from simulations reproduce well the experimental measurements under similar material
and boundary conditions. Our findings clearly show that the number density of liquid bonds in the bulk
is a decisive parameter for the overall cohesion of wet granular materials. A homogeneous distribution
of the liquid within the bridge debonding distance, even at low volume contents, leads to the highest
cohesion. The latter is independent of the liquid content as far as the liquid remains in the pendular state
and the number density of liquid bonds remains constant. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Granular materials are composed of well-defined particles with specific kinematics locally dictated
by steric constraints and unilateral interactions that are responsible for the rich behavior of these
materials at the macroscopic scale. These materials can thus be modeled at the particle scale,
and various particle properties (shape, size, etc.) and contact interactions (friction, adhesion, etc.)
can be quite naturally introduced in discrete-element numerical simulations of the material. In the
same way, external and environmental factors such as moisture and temperature may be included
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in the description through dependence of local parameters with respect to such factors. In spite of
drawbacks, mainly related to unavoidable simplification of the local description and the number
of particles limited by computational efficiency, this approach with the corresponding numerical
developments provides new scopes for a better understanding of the behavior of complex materials
from their rich microstructural properties. Discrete-element method (DEM) for the simulation of
dry granular media, first popularized by the pioneering work of Cundall and Strack [1], has evolved
into a mature technique during the two last decades [2–5]. The focus is now mostly directed
towards the inclusion of new ingredients such as cohesion due to cementation or capillary bonding
as in unsaturated soils [6–9].

This paper is concerned with the mechanical behavior of wet granular materials investigated both
by a discrete-element approach and experiments. Wet granular materials are of primary interest to
various fields of science of engineering such as the mechanics of granular soils and wet processing
of powders [10, 11]. Capillary cohesion is negligibly small for coarse soils or at high confining
stresses. On the other hand, the moisture and the resulting cohesion are important for fine surface
soils. For example, when plowing a wet granular soil, large cohesive aggregates are formed. The
largest capillary cohesion force for millimeter-size sand grains is about 4×10−4N independent of
the volume of the capillary bond. This force is nearly four times the grain weight, allowing thus for
the formation of cohesive aggregates. Transformations involving primary particle agglomeration
into coherent granules are of special interest in many applications in a wide range of industries
such as pharmaceuticals, agronomic products and detergents [10, 11].

Recently, several simulations of wet granular media have been reported [12–14]. Mikami et al.
[15] used this type of simulation together with a regression expression for the liquid bridge force as
a function of liquid bridge volume and separation distance between particles. They mainly studied
bubbling behavior and agglomerate formation in a fluidized bed and they found realistic results.
Dense agglomerates were simulated by Gröger et al. [16] using a cohesive DEM. They found
a good agreement with experimental data for the yield stress at all confining pressures down to
the value of the tensile stress. Shear strength behavior of unsaturated granulates was also studied
numerically by Jiang et al. [17] as a function of suction (pressure difference between liquid and
gas).

From the experimental point of view, the point is that classical testing machines employed in soil
mechanics are designed to work at high levels of confinement and they involve massive elements
that induce high inertia. For these reasons, they are not adapted for wet granular materials. Direct
measurements of tensile strength by means of appropriate experimental setups have been reported
recently [18–20]. In granular media, it is generally much more difficult to access local information
such as contact forces or liquid bonds. Few investigations have recently been reported to visualize
liquid bonds by means of the index matching technique [21, 22].

Hence, both the numerical implementation of capillary interactions and the use of appropriate
testing techniques are key aspects of the present work. In this paper, we present a new expression
for the capillary force as an explicit function of the interparticle gap and local volume of the liquid.
We show that this expression provides excellent fit for the capillary force between two particles
of unequal sizes. This expression is used to perform DEM simulations of direct shear and simple
compression tests, which are compared with experimental data obtained by means of an appropriate
testing setup. In the following, we first present in Section 2 the numerical approach with focus on
capillary cohesion. In Section 3, we apply the method to direct shearing of wet granular samples.
The main characteristics of our experimental setup designed for low confining stress are described
in this section. We compare the numerical and experimental data, and we analyze the effect of water
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content and the numerical density of capillary bonds. A similar approach is presented in Section 4
in the case of simple compression tests that confirm the good agreement between numerical and
experimental data as to stress–strain behavior and the effect of liquid distribution. We conclude
with a summary of the main results and perspectives of this work.

2. NUMERICAL METHOD

We used the DEM in the spirit of molecular dynamics with a velocity Verlet integration scheme
[1, 23]. In DEM simulations, the equations of motion of the particles are integrated incrementally
by taking into account the interactions between the particles according to an explicit molecular-
dynamics-like scheme. The realism of such simulations is thus dependent on the underlying model
of the interactions. For numerical stability, the time step was set to 10% below the elastic response
time �tc=�

√
m/Kn, where m is the smallest particle mass and Kn is the largest normal stiffness

in the system [1, 23]. In quasi-static loadings, where the inertia plays no major role, the particle
masses can be increased artificially, allowing thus for larger time steps. On the other hand, the
damping rate �n should be below the critical value �crit=2

√
mKn. In this section, we first present

the interaction laws that we used for elastic contact, Coulomb friction and capillary cohesion. We
discuss in more detail a new analytical form that we propose for the capillary force as a function
of the gap and local water volume. Then, we present the protocols for deriving the distribution of
liquid in the bulk.

2.1. Normal repulsion force

The force laws involve normal repulsion, capillary cohesion, Coulomb friction and normal damping.
The normal force fn is modeled as a sum of three contributions:

fn= f en + f dn + f cn (1)

where f en , f
d
n and f cn are the repulsive contact force, damping force and capillary force, respectively.

The repulsive force between two smooth elastic spheres is given by the Hertz approximation
that expresses the repulsion force as a function of the distance between two spheres [24]. From
a computational viewpoint, it is more common to use a linear approximation where f en depends
linearly on the normal distance �n between the particles (Figure 1(a)):

f en =
{−kn�n for �n<0

0 for �n�0
(2)

where kn is the normal stiffness.
The damping term f dn accounts for inelastic shock between particles. The simplest model of

damping is a viscous force depending linearly on the normal velocity �̇n:

f dn =
{
2�n

√
mkn�̇n for �n<0

0 for �n�0
(3)

where m=mim j/(mi +m j ) is the reduced mass of the particles i and j , �n is a damping rate
varying in the range [0,1[. The rate of normal dissipation or the restitution coefficient between
particles can be expressed as a function of �n [25].
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Figure 1. (a) Geometry of a capillary bridge; (b) capillary force f cn as a function of the gap �n between
two particles for different values of the liquid volume Vb and size ratio r according to the model proposed
in this paper (solid lines), and from direct integration of the Laplace–Young equation (open circles); and

(c) scaled plot of the capillary force as a function of the gap from the direct data shown in (b).

The repulsion force f en together with the viscous damping force f dn defines a spring-dashpot
model commonly used for the simulation of dry granular media. Subtle changes to this framework
allow for more realistic description of shock laws and nonlinear elastic regimes [25]. Since we
are interested here in capillary interactions, we stay with this basic framework and focus on the
capillary force f cn .

2.2. Capillary force

Capillary force f cn is a function of the liquid bond parameters, namely the gap �n, the liquid
bond volume Vb, the liquid surface tension �s and the particle–liquid–gas contact angle �. The
capillary force can be obtained by integrating the Laplace–Young equation [15, 26–28]. However,
for efficient DEM simulations, we need an explicit expression of f cn as a function of the liquid
bond parameters. On the other hand, most authors have considered the capillary force for liquid
bond between two spheres of the same diameter. When the diameters are different, the Derjaguin
approximation is used. Recently, by means of experiments and fitting considerations, Soulié et al.
[28] proposed an expression for the capillary force between two smooth spheres. Here, we propose
a new expression for the capillary force that can be considered as a simplified and analytical
writing of that expression. We show that this form is well fitted by the data from direct integration
of the Laplace–Young equation both for monodisperse and polydisperse particles.
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The geometry of a capillary bridge between two spherical particles of unequal diameters is
illustrated in Figure 1(a). At leading order, the capillary force f0 at contact, i.e. for �n�0, is

f0=−�R (4)

where R is a length depending on the particle radii Ri and R j , and � is given by [29–31]
�=2��s cos� (5)

Note that a negative value of �n corresponds to an overlap between the particles. The assumption
is that the overlap is small compared with the particle diameters. The data obtained from direct
integration of the Laplace–Young equation show that the geometric mean R=√

Ri R j is more
suited than the harmonic mean 2Ri R j/(Ri +R j ) proposed by Derjaguin for polydisperse particles
in the limit of small gaps (see below) [32]. We also note that f0 in Equation (4) is independent of
the bond liquid volume Vb.

The adhesion force f0 at contact is the highest level of the capillary force. The latter declines
as the gap �n increases. The capillary bridge is stable as long as �n<�max

n , where �max
n is the

debonding distance given by [13]

�max
n =

(
1+ �

2

)
V 1/3
b (6)

We note that the debonding distance depends only on the liquid volume Vb, whereas the adhesion
force f0 at contact is a function only of particle diameters through the geometric mean R.

Between these two limits, the capillary force falls off exponentially with �n:

f cn = f0e
−�n/� (7)

where � is a length scale that should be a function of Vb and the particle radii. The role of particle
size is two-fold. On one hand, the liquid volume should be compared with a mean particle radius
R′, a function of Ri and R j , but which can be different from R introduced in Equation (4) for the
adhesion force. On the other hand, the asymmetry due to unequal particle sizes can be taken into
account through a function of the ratio between particle radii. We set

r =max{Ri/R j ; R j/Ri } (8)

Dimensionally, a plausible expression of � is

�=ch(r)

(
Vb
R′

)1/2

(9)

where c is a constant and h is a function only of r . When introduced in Equations (9) and (7), this
form yields a nice fit for the capillary force obtained from direct integration of the Laplace–Young
equation by setting R′ =2Ri R j/(Ri +R j ), h(r)=r−1/2 and c�0.9.

Figure 1(b) shows the plots of Equation (7) for three different values of the liquid volume Vb
and size ratio r together with the corresponding data from direct integration. We see that the fit
is excellent at �n=0 (at contact) and for nearly all values of �n up to the debonding distance.
Figure 1(c) shows the same plots of the direct data as in Figure 1(b), but the forces are normalized
by �R and the lengths by �. The data collapse on the same plot, indicating again that the force �R
and the expression of � in Equation (9) characterize correctly the behavior of the capillary bridge.
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In summary, the capillary cohesion can be expressed in the following form:

f cn =

⎧⎪⎪⎨
⎪⎪⎩

−�R for �n<0

−�Re−�n/� for 0��n��max
n

0 for �n>�max
n

(10)

with

�= c√
2
Vb

1/2{max(Ri/R j ; R j/Ri )}−1/2
{
1

Ri
+ 1

R j

}1/2

(11)

In the simulations, a capillary bridge is removed as soon as the debonding distance is reached,
and the liquid is redistributed among the contacts belonging to the same particle in proportion to
grain diameters [33]. We also assume that the particles are perfectly wettable, i.e. �=0. This is a
good approximation for water and glass beads (GB).

2.3. Friction force

For the friction force ft, we use the well-known viscous-regularized Coulomb law [25, 34, 35]

ft=−min{�t‖ḋt‖,	( fn− f cn )} ḋt‖ḋt‖
(12)

where �t is a tangential viscosity parameter, 	 is the coefficient of friction and ḋt is the sliding
velocity. In relaxation to equilibrium, ḋt declines but never vanishes due to residual kinetic energy.
The equilibrium state is practically reached as soon as we have �t‖ḋt‖<	( fn− f cn ) at all contacts,
i.e. when the friction force is inside the Coulomb cone everywhere in the system.

2.4. Distribution of liquid

The capillary force f cn , according to Equation (10), and the debonding distance �max
n in Equation (6)

depend on the bond liquid volume Vb. It is thus important to use a convenient distribution rule
for the allocation of the total volume, V�, of the liquid to contacts or adjacent particles within the
debonding distance. To do so, the following conditions must be satisfied:

(i) The liquid is fully distributed in the form of capillary bonds (no liquid at the interstitial
sites or pores), so that

V� =∑
Vb (13)

(ii) The bond volume is dependent on the mean particle size. This is because the liquid retention
capacity increases with particle size.

(iii) The particle pairs with a gap beyond the debonding distance are not eligible to receive
liquid.

For a homogeneous distribution, the liquid is attributed to all eligible pairs. We assume that the
bond volumes are proportional to the volumes of the pairs:

Vb=�R3 (14)
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where � is fixed by condition (13). The use of geometric mean R≡√
Ri R j is a simple matter of

choice. Any other mean can be used for the same purpose. When debonding occurs, the bond liquid
volume is redistributed among neighboring bonds. This local redistribution can gradually lead to
a globally inhomogeneous distribution. In order to ensure homogeneous distribution all along a
simulation run, the liquid distribution should be updated regularly according to Equation (14). As
a result, new eligible pairs appear and new liquid bonds are formed. Below, we will refer to this
redistribution procedure as Protocol 1.

The distribution can be made more realistic by taking into account the ‘loss’ of liquid in the
form of droplets at the surface of the particles or partial draining due to gravity. The liquid may
also cluster in the interstitial pores [21, 22, 36]. However, most simulation results presented below
are not sensitive to such refinements. This is because the deformations are not large enough for
the liquid distribution to evolve significantly from the initial homogeneous distribution.

3. DIRECT SHEAR

3.1. Experiments

We designed an experimental setup which, in contrast to the standard Casagrande testing machine,
allowed us to measure the shear strength at very low confining pressures (<1kPa). Similar setups
have been used by several authors in the past [37–40]. We present here the setup, the materials
and the wetting protocol and our main experimental results.

3.1.1. Experimental setup. A sketch of the shearing setup is shown in Figure 2. Wetted grains are
poured in a plexiglas cylindrical cell and confined by means of a circular lid of area S placed on
the top of the material. The lid is equipped with a reservoir allowing to impose an overload by
adding a desired amount of sand. The total vertical force N acting on the sample is the sum of the
weights of lid and sand (A). A cell is composed of two disjoint parts kept together during sample
preparation. The upper part can move horizontally with respect to the lower part by pulling on a
rope attached to it and which supports a cupel through a pulley (B). The pulling force T can be
increased by adding sand into the cupel. The friction force between the two parts of the cell is
reduced by water lubricating the rims. In order to reduce the friction force exerted by the material
along the walls, the thickness h of the upper part of the sample is taken to be below the diameter of
the cell (46mm). The heights of the upper and lower parts are about 10 and 15mm, respectively.

The sample is sheared along the common section of the two parts of the cell. This shear plane
is subjected to a tangential stress 
=T/S and a normal stress �=N/S+�gh, where � is the bulk
density and g the gravity. We gradually increase the shear stress 
 for � kept constant. Unstable
failure occurs when 
 reaches the shear strength 
m. At this point, an infinitesimal stress increment
causes a finite deformation of the sample manifesting itself as a sudden slide of the upper part
of the sample. The upper part is stopped by collision with two bars located 5mm away from the
cell. We did not measure the displacements. We recorded 
m for different values of � in the range
varying from 200 to 800 Pa, and for different values of water content.

3.1.2. Materials and wetting protocol. Four types of materials were tested: (1) a sand ‘S’ composed
of angular grains with diameters ranging from 0.1 to 0.4mm, (2) ‘tightly graded’ polydisperse
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Figure 2. Testing cell and shearing setup.

GB ‘GB45’ with diameters from 0.4 to 0.5mm, (3) ‘well-graded’ polydisperse GB ‘GB48’ with
diameters from 0.4 to 0.8mm, and (4) monodisperse GB ‘GB1’ of diameter 1mm.

The grains were wetted by adding distilled water to dry material placed in a vessel and shaking
energetically until all visible water clusters disappear. The vessel used for mixing is transparent
allowing us to check visually the state of the material. After mixing, the wetted material is poured
into the testing cell. The water content is evaluated by comparing the masses of a sample of the
material before and after testing by means of a heat chamber used for drying the sample at 105◦C.
The water content is given by w=mw/ms, where mw and ms are the masses of water and grains,
respectively. The wet materials were tested for water contents below 5% corresponding to the
pendular state for our materials. The experiments were performed at ambient conditions. Each
experiment lasted a few minutes. The loss of liquid was always below 2%. This loss is not only
due to evaporation but also due to partial wetting of the internal walls of the cell. But it is low
enough to assume a constant liquid volume (as in simulations, see below).

3.1.3. Results. Several tests were carried out with the four materials at our disposal (S, GB45,
GB48 and GB1) for different values of water content w and normal stress �. Figure 3 shows the
yield loci 
–�. Within experimental precision, the data are well fitted by a straight line for each
material, in agreement with the Mohr–Coulomb model


=(tan)�+c (15)

where tan is the internal coefficient of friction and c is the Coulomb cohesion. We also observe
that the angle of internal friction  is independent of w as the Coulomb lines are nearly parallel.

Using a similar experimental setup, Schellart found that the yield loci are curved down as the
normal stress tends to zero [38]. In dry granular media, the shear stress vanishes naturally at
zero normal stress. However, in the wet case according to Figure 3, there is a finite cohesion c
corresponding to the intersection point of the Coulomb line with the axis �=0. Figure 4 displays
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Figure 3. Yield loci, fitted by straight lines, for our experimental granular materials:
(a) S; (b) GB45; (c) GB48; and (d) GB1.

the evolution of c as a function of w for the four materials. The evolution of c is strongly nonlinear
and saturates at a level c=cm for a water content w=wm, both depending on the material. The
experimental estimations of cm and wm, as well as the internal angle of friction for our materials,
are given in Table I.

The experimental data at different levels of water content show larger fluctuations for GB than
for sand. These fluctuations stem certainly from the lower level of cohesion for GB and also from
their tighter particle size distribution. The differences in the values of cm can be attributed to
differences in the mean particles sizes in different materials. In the case of sand, the nonspherical
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Figure 4. Macroscopic cohesion c as a function of water content w for four tested granular
materials. The trends are represented by dashed lines as a guide to the eyes.

Table I. Characteristic data from experimental measurements.

〈D〉 (mm)  (deg.) cm (Pa) wm (%)

S 0.16 33 600 3
GB45 0.45 30 350 2.5
GB48 0.6 30 300 1
GB1 1 25 150 <1

form of the particles might also affect the value of cm. The value of wm is less clearly defined and
is likely to depend on the surface state of the particles [36]. The sand grains have a rough surface
requiring more water to form a meniscus than the more smooth GB. On the other hand, partial
clustering of water may occur and this might require a larger amount of water for the formation
of liquid bridges [21, 22].

3.2. Numerical simulations

3.2.1. Sample preparation. The numerical samples are composed of 7307 spherical particles of
diameters 2, 1.5 and 1mm in proportions of 50, 30 and 20%, respectively. The dimensions and
the total volume of the numerical sample are similar to those of the experimental samples. This
numerical sample can be compared with the sample GB1 (Table I) although the size distribution
of the particles is slightly different. In fact, using exactly the same particle sizes as in experiments
with the same total volume would require many more particles in simulations and thus much more
computation time. The particles are placed randomly in a cylindrical cell. The initial configuration
is prepared under gravity without introducing capillary bonds. Then, we attribute a capillary bond to
eligible pairs of particles (within the debonding distance). Finally, the sample is consolidated under
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the action of a vertical confining pressure with a zero coefficient of friction. The consolidation is
stopped and the coefficient of friction set to 0.4 as soon as the solid fraction �=0.6 is reached.
The subsequent compaction is negligibly small.

As in experiments, the cylindrical cell is composed of two disjoint parts. The lower part is fixed
whereas the upper part moves horizontally, giving rise to a shear plane along the common section
of the two parts. We apply a constant vertical load �, the same as in experiments, on the top of
the sample. However, in contrast to experiments, shearing is controlled by imposing a constant
horizontal velocity on the upper part. The numerical sample has exactly the same dimensions as
in experiments.

During shearing, the number of liquid bonds evolves and the available liquid must be redistributed
in the system. We used two different methods for redistribution: (1) we simply apply the above
procedure every time the contact list is updated (Protocol 1); (2) the volume of a broken liquid
bond is split between the corresponding particles (proportional to their diameters) and conserved
for the formation of new liquid bonds when a contact occurs with the same particles (Protocol 2).
In this method, the volume of free liquid left after debonding is kept with the two particles (and
not distributed to the other bonds of the same particles) and used only if a new contact is formed.
This implies that if the initial liquid distribution is homogeneous, then it will remain so during
deformation as in the first method. In other words, the liquid will not migrate considerably and
one should expect quite similar results from both methods. Indeed, in different tests, we found
that both methods lead to nearly identical results (see Figure 12 in Section 4.2.2).

3.2.2. Numerical results and comparison with experiments. We performed a series of direct shear
simulations with different values of the water content from 0 to 2%.

Figure 5 shows the shear strain 
 for a dry and a wet sample with w=1% as a function of
horizontal displacement ��. The initial configuration is the same in both simulations. The residual
state is reached without passing by a stress peak and for a displacement of the order of one particle
diameter for all tested values of the water content. The steady-state deformation involves numerous
instabilities that occur throughout the system and appear in the form of rapid stress drops on
the stress–strain plots. We see that in transition from dry to wet materials, the frequency of such
instabilities declines.

The evolution of the Coulomb cohesion can be analyzed as a function of water content w as
in experiments. Figure 6(a) shows fitted yield loci from 15 simulations with three different values
of the confining pressure � and five different values of w. The Coulomb cohesion c is drawn as
a function of w in Figure 6(b). The latter is very similar to the corresponding experimental plot
(Figure 4(c)) for monodisperse GB. We observe a saturation of c at still lower levels of water
content (wm�0.1%).

The limit value cm of the Coulomb cohesion as a function of water content, as observed here
both in the simulations and experiments, is not intuitive. Although the liquid bond volume appears
in Equations (6) and (11), it is important to remark that failure is initiated at contacts where the
maximum capillary force f0 is reached and this force is independent of the local liquid volume.
For this reason, the Coulomb cohesion is mainly controlled by the density of liquid bonds or
equivalently by the bond coordination number z. In order to illustrate the effect of z, in Figure 7
we show the stress–strain plots for two samples differing in the number of liquid bonds for the
same water content. The initial particle configuration is the same in both samples but there are
two times less bonds in one sample (obtained by removing half of the bonds in the first sample).
We see that in the initial stages of deformation, the cohesion is close to half that of the sample
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Figure 6. Simulation results: (a) estimated yield loci and (b) Coulomb cohesion as a function of water
content (experiments were carried out with 1mm glass beads).

involving a double the number of water bonds, and it increases as the wet coordination number
grows. The Coulomb cohesion saturates when the bond coordination number saturates as the total
liquid volume is increased. This means that the main effect of the liquid volume (factor V 1/3

b in
Equation (6)) is to increase the debonding distance �max and thus the bond coordination number
as liquid volume is increased in the sample. The bond coordination number saturates when each
particle has already a bond with all of its first neighbors.

We observe that the maximum cohesion cm=120Pa in the simulations is below that (cm=
150Pa) for 1mm GB. The lower value of cm in simulations can be attributed to the larger average
diameter of the particles compared with experimental samples. Indeed, it can be shown that the
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Figure 7. The shear stress 
 as a function of shearing distance �� normalized by the average particle diameter
〈D〉 for a dry (dashed line) and two wet samples (solid lines) with a high bond coordination number
(thick line) and with two times less bonds (thin line). The inset shows a zoom for small deformations.

Coulomb cohesion varies in inverse proportion to the average particle size [33]. This effect of the
particle size can also be observed for other experimental samples in Figure 4 where cm and wm
are lower for larger values of 〈D〉.

4. SIMPLE COMPRESSION

In this section we consider the influence of water content on the strength of our granular samples
under simple compression loading. The strains are known to be more homogeneous in compression
than in direct shear. On the other hand, the strengths are weaker and thus the capillary effects are
straightforward to measure. The experimental data are borrowed from Soulié [41], who compared
also his results with numerical simulations and found qualitative agreement between them. He
explained the quantitative differences of numerical data with experimental data by invoking the
distribution of water. We will revisit below the same data in the light of our new numerical
developments.

4.1. Review of experimental results

The experimental tests were carried out with samples of GB of diameters ranging from 0.8 to
1.3mm. The samples were of cylindrical shape with a diameter of 25mm and a height of 17mm.
The water content was varied from 0.5 to 12%. The beads were wetted in a hermetic seal by
mixing a mass of 0.1 kg of dry beads with the amount of water required to reach the targeted
water content. The wetted particles were then molded in a cylindrical vessel. Figure 8(a) shows a
photograph of a typical sample prepared according to this protocol.
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Figure 8. Typical sample used in simple compression tests: (a) glass beads for w=3%
and (b) spherical particles in simulations.
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Figure 9. Compressive strength as a function of water content. Experimental data obtained by Soulié [41].

Each cylindrical sample is subjected to axial compression up to failure. Figure 9 shows the
compressive strength �rupt, corresponding to the axial stress at failure, as a function of water
content.

4.2. Numerical study

4.2.1. Sample preparation. The numerical samples are of cylindrical shape and composed of 8000
spherical particles with diameters ranging from 0.8 to 1.3mm, as in experiments. The particle size
grading is given in Table II.

The samples are prepared by initially letting the particles fall into a cylindrical box of diameter
25mm. Then, the sample is ‘sealed’ by adding an upper wall loaded vertically. At this point, the

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2007)
DOI: 10.1002/nag



A MODEL OF CAPILLARY COHESION FOR NUMERICAL SIMULATIONS

Table II. Particle size grading in numerical samples.

Diameter (mm) 0.8 0.9 1 1.1 1.2 1.3
Proportion (%) 10 20 20 20 20 10

w = 2%

w = 4%

w= 6%

(P
a)

σ

/

Figure 10. Axial stress as a function of axial strain for three different values of the water content.

sample is 17mm high and has a solid fraction of 0.62. Finally, the capillary cohesion is introduced
between eligible pairs of particles and the surrounding cylindrical wall is removed. The sample
relaxes to equilibrium due to capillary cohesion with only a slight settlement of about 0.1mm due
to gravity, see Figure 8(b).

4.2.2. Numerical results and comparison with experiments. Numerical simulations were carried
out for 2, 4 and 6% of water content. In each simulation, the upper wall moves at 1mm/s for 2 s.
The axial stress � is simply estimated from the axial resultant of the forces acting on the upper
wall divided by its area, as in experiments. The axial stress � is shown in Figure 10 as a function
of axial shorting �h normalized by the average particle diameter 〈D〉. The compressive strength
�rupt corresponds to the axial stress at the peak. Remark that the axial stress declines beyond the
stress peak.

In Figure 11, a snapshot of the sample of w=2% is displayed at the end of the simulation.
We observe the barrel shape of the sample, as observed in experiments with granular soils. Figure
11 shows a vertical section of the sample with color-coded particle displacements. We observe an
immobile cone at the lower central part of the sample, which can be attributed either to the motion
of the upper wall or to the effect of gravity.

The compressive strengths are plotted as a function of water content in Figure 12 together with
the numerical data of Soulié and the experimental data of Figure 9. We see that the numerical data
of our simulations are closer to the experimental data than the initial numerical data of Soulié.
It should be noted that the capillary law used by Soulié is different from the one employed in
the present work. However, the fits to the data obtained from direct integration of Young–Laplace
equations are quite similar.
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Figure 11. Numerical sample at the end of the simulation with w=2%. We observe a nearly immobile
region indicated by dashed lines.
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Figure 12. Compressive strengths as a function of liquid content in simple compression tests from
experiments and simulations for three different redistribution protocols (see text).

In order to find hints to explain the observed discrepancies, we carried out more simulations
using different protocols for water redistribution. In addition to the two protocols introduced in
Sections 2.4 and 3.2, we used another protocol in which the effect of gravity is accounted for by
transferring the liquid from broken bond between two particles to the lowest contact located on
the lower hemisphere of each of the two particles (Protocol 3). In this protocol, the volume of the
liquid bond is shared by the two particles proportional to their sizes. During shearing the liquid
is gradually transported downward according to the bonding–debonding dynamics of the material.
This dynamics being generally slow, the transport of liquid by this mechanism is not effective for
small deformations.

Two points were checked in more detail: (1) the rule for the redistribution of water when a
capillary bond fails according to the three protocols introduced in Sections 2.4, 3.2 and 4.2 and
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(2) the bond coordination number z which simply depends on the initial selection of eligible pairs
of particles. In fact, as in the case of direct shearing, our data from simple compression show that
the main influence comes from z. In order to illustrate this point, in Figure 12 two data points are
shown for two simulations, w=2 and 4%, with reduced number of liquid bonds by a factor 2. We
see that the shear strength for these two samples is significantly reduced compared with the other
simulations with different protocols.

On the other hand, we see that, as long as z is the same, the protocols for water redistribution
have nearly no effect. The difference between our simulations and those of Soulié is thus only
related to the initial values of z. Indeed, in contrast to our simulations, Soulié did not allow the
sample relax after the removal of the cylinder used to mold the sample. The relaxation of the
sample before compression leads to lower liquid bond coordination. In this respect, it should be
noted that also in experiments water is not distributed to all present or eligible particle pairs.
Shaking might be never efficient enough to allow all pairs to receive liquid bonds. Experimental
investigation of water distribution seems thus to be crucial for a better modeling of wet granular
media [21, 22].

5. CONCLUSION

In summary, we developed a DEM-type approach for the simulation of 3D wet granular materials
with spherical particles. The capillary law implemented in this framework is an analytical expression
of the capillary force as a function of geometrical and materials parameters of a liquid bridge,
and it was shown to provide excellent fit for the data from direct integration of Young–Laplace
equations. This code (tapio-K, see [42]) was applied to simulate the quasi-static behavior of wet
granular media for direct shear and simple compression boundary conditions and compared with
simulations carried out with nearly the same parameters and boundary conditions. The experimental
setup was specially designed to allow for the measurement of weak stresses, a necessary condition
for the evaluation of the effects of capillary cohesion with millimeter-size particles.

Experimental direct shear tests were performed with GB and sand, and the shear strengths were
analyzed in the Mohr–Coulomb space for weak confining stresses (below 1 kPa). We found that the
internal angle of friction was not sensitive to water content w, and the Coulomb cohesion increased
in a nonlinear fashion with w to saturate to a well-defined level cm of cohesion independent of
water content for w>wm. A similar behavior was observed in numerical simulations. The cohesion
cm was found to be quite close between the experiments and numerics for the samples of the same
particle size distribution (cm=120Pa in numerics vs cm=150Pa in experiments). The numerical
values of wm were found to be systematically below those in experiments.

For simple compression tests, we compared the experimental results of Soulié [41] with numer-
ical simulations performed with cylindrical samples of wet particles. Comparing the influence of
water content between experiments and simulations, we found discrepancies that were analyzed by
further simulations where the bond coordination number was varied. We found that, in contrast to
water content, the bond coordination number plays a major role in compressive strength. Numeri-
cally, it was also shown that the details of the redistribution of water at failed capillary bonds has
a minor effect on the behavior.

Our findings and the comparisons made with experiments carried out with similar boundary
conditions credit the numerical method, and more particularly the implemented capillary law. On
the other hand, the observed discrepancies open new queries concerning the distribution of water
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in real samples of wet grains. It seems thus that, in order to progress in understanding the strength
properties of wet granular materials, more detailed observations are required. New experiments
are presently under way to evaluate the local distribution of capillary bridges and the influence of
the mixing protocol.
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