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Abstract

We present a new approach to assess the two-dimensional motion of rigid bod-

ies in granular materials. Although it was adapted from digital image correla-

tion technique, the heart of the presented technique relies on specific

treatments related to the discrete nature of grain-displacement fields. The code

called TRACKER has been developed to process the digital images and measure

the in-plane displacement and rotation of each individual grain from one

image to another. A remarkable feature is the use of a specific strategy that

allows tracking all particles, without losing any of them (which is a typical

problem when tracking assemblies of discrete particles over many images).

This is achieved by a two-step procedure, where, in case of problematic track-

ing of a grain, the size of the search zone is increased in an adaptive manner,

that is, taking into account the results of tracking in the neighbourhood of the

particle. The accuracy of the measured displacements and rotations was tested

on both perfect synthetic images and digital photographs of a sheared assem-

bly of grains. An automatic procedure that corrects the lens distortion further

improves the quality of the measurements. The accurate assessment of the

grain kinematics opens very interesting perspectives, especially in the study of

displacement fluctuations in granular media.
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1 | INTRODUCTION

The apparatus named 1γ2ε [1], developed at Laboratoire 3SR in Grenoble, France, is a two-dimensional
(2D) parallelepiped that allows for any quasi-static straining on 2D granular analogue materials—called Schneebeli
materials[2]—Figure 1. The rod packing stands vertically and undergoes the gravity field. It has been used to study, for
instance, the structure evolution of granular materials under complex loading paths[3] or the effect of particle shapes on
the macroscopic strength[4]. One special feature of this device is that the front face of the specimen is exposed. Pictures
can thus be shot during loading tests and then analysed to extract full 2D kinematics of individual grains. In the 90s,
this extraction was performed by means of 12 × 9 cm silver photographies in which particle translations and rotations
were manually measured using a stereo comparator device. The displacement (translation) accuracy was quite good
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(in the order of 3 × 10−3 mean diameter), but the time required to treat each photograph was prohibitive (typically
1.5 h per photo to manually click on 1,000 rods). At the start of this century, analogue cameras were replaced by digital
ones. Thus, a new numerical photogrammetry technique to obtain semi-automated measurements of kinematics was
used[5]. The use of digital cameras made the shots easier (no need of the photography silver film processing step);
however, the image analysis procedure was not able to reduce the process time. Between each couple of successive pic-
tures, even if most particles move almost like continuum mechanics dictates, many of them have unpredictable dis-
placements, and it was necessary to manually “help” the process to find the right position and rotation of grains.
Moreover, the accuracy was very coarse (in the order of the pixel, which correspond to 10−2 of particle's mean diameter
with the 16 MPixels digital camera used at this time).

It was therefore decided to develop a new way to assess full 2D kinematic from digital photographs of granular sam-
ples made of Schneebeli rods with the following specifications: fully automated measurement of grain kinematic (trans-
lations and rotations) able to handle more than 1,000 digital photographs and above all, a displacement accuracy
strongly increased compared with that obtained with the previous method[5]. The technique presented can be regarded
as the Lagrangian version of the particle image velocimetry technique that aims to determine from pairs of successive
images the velocity of tracer particles seeded within a mass-flow of particles, with an Eulerian manner. With this
respect, we called it the particle image tracking (PIT).

It is important to emphasise that it is not so straightforward to track particles in an individual and Lagrangian way.
In fact, known codes, although efficient and accurate in measuring continuous fields, fail to successfully perform this
task of particle tracking. This is mainly due to the unpredictable nature of the movement of some particles as illustrated
in Figure 2; a specificity of the plastic deformation of dense (hyperstatic) granular media where each particle is sub-
jected to strong geometric constraints by its neighbourhood. In addition to the description of the PIT method below,
other related aspects have been appended so as not to disturb the reading. These are (a) the quality of the pattern sig-
nals, (b) the algorithm parallelisation, and (c) the correction of distortion and parallax of acquired images; these topics
are addressed in Appendices B1, C1, and D1, respectively.

FIGURE 1 Assembly of about 2,000 wood rods placed vertically in

the device 1γ2ε device[1]. For this example, the initial size of the packing

55 × 60 cm, and the mean diameter of the rods is �13 mm

FIGURE 2 (a–d)Sequence of images showing the “jump” of three grains—marked with yellow crosses—within a bidimensional

granular assembly (Schneebeli rods). These jumps are characterised by very large displacements in comparison with the average

displacement of the neighbouring grains. Such events, which have a more or less pronounced amplitude, are not uncommon during a

macroscopic deformation and constitute what could be qualified as fluctuation of displacements
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2 | THE PIT TECHNIQUE

Over the last few years, there has been substantial development in quantitative imaging analysis. One of them is the
digital image correlation (DIC), initially suggested by Chu et al.[6]. It has become a powerful technique that provides
reliable kinematic measurement fields, for example, displacement, acceleration, strain, and strain-rate fields. This tech-
nique is a fully nonintrusive measurement tool (provided that image acquisition is itself nonintrusive) that can be used
to follow the straining of patterns of a wide range of continuous materials such as metals, polymers, ceramics, and con-
cretes. The particular case of granular materials (fine sands, silts, etc.) can be treated as a continuum when the followed
pattern includes several grains[7]. In this peculiar case, the resulting displacements and their gradients have to be reg-
arded as averaged transformations over the tracked pattern.

Another usage of the DIC can be envisaged; it consists to track the grain's displacements and rotations, one by one,
within the material. However, problems arise when the DIC is applied at this grain scale: the motion of individual grain
is not regular because of their mutual geometric exclusion, and it does not strictly mirror the kinematics imposed at the
packing boundaries[8,9].For this specific purpose, we have developed an image processing software called TRACKER

where the speckles on a digital image of each grain are used to track their displacements u, v and orientation θ from
their original position r and orientation θ.

2.1 | The DIC technique customised for rigid motions

The basic concept of the DIC relies on finding the best similarity between the subsets of two images. The subset from
the first image is transformed (e.g., displaced, stretched, tilted, and/or locally opened) according to a set of parameters
fPg in order to be correlated with the second image. The best correspondence is tested trough a cross-correlation coeffi-
cient φ. It can be the zero mean normalised cross correlation (ZNCC) coefficient, which has the benefit of not being sen-
sitive to changes in amplitude and shift of the correlated signal—it indeed means that any change in lighting in the
photographs will not affect the cross correlation. This coefficient reads

φ fPgð Þ=

P
S

I1ðx1Þ−�I1ð Þ I2ðx2Þ−�I2ð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
S

I1ðx1Þ−�I1ð Þ2P
S

I2ðx2Þ−�I2ð Þ2
r , ð1Þ

where In is the grey level of the pixel of coordinates xn = (xn, yn)
T of the picture n and �In is the mean grey level com-

puted over the corresponding pixel subsets Sn.
A first specificity of the PIT is to define a subset S as relative positions instead of a simple grid. In this way, the patch

can be given any shape that will be used to follow a pattern throughout the rigid movements. It is thus possible to adapt
the shape of the patch to the shape of the grains being tracked (Figure 3) and thus optimise the correlated signal.

Let us now focus on the transformation of the vector Δx1 = x1 − r towards the vector Δx2 = x2 − (r + u), where r is
the coordinate of a tracked material point and u is its displacement (see Figure 4). This transformation can be written
by means of the transformation gradient operator:

Δx2 =F ·Δx1: ð2Þ

FIGURE 3 Examples of shapes for the

tracked pattern defined by a set of pixel

positions relative to the particle center. (a) The

common rectangular pattern centred on the

tracked point, (b) a circular shape that makes

possible the definition of a longer optical signal,

(c) hollow disk (or ring) that conforms the

external part of the particle shape
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The transformation gradient expresses as a function of the displacement gradient: F = ru + 1, where 1 is the iden-
tity matrix. Including this latter relation in Equation (2), a position x1 in the first picture should be moved to the follow-
ing position in the second picture:

x2 = x1 +u+ru ·Δx1: ð3Þ

In this case, the transformation of a pattern is controlled by six parameters held by u and ru:

Pf g= u, v,
∂ux
∂x

,
∂ux
∂y

,
∂uy
∂x

,
∂uy
∂y

� �
: ð4Þ

The tracking procedure in the classical DIC consists in finding for each followed position r, the parameters fPg so
that the ZNCC between a pair of signals from two distinct images is maximised. In practice the quantity 1 − φðfPgÞ is
minimised.

It is interesting to note that Equation (3), which is commonly employed in DIC, might be written otherwise directly
from Equation (2), that is, without introducing ru. It can thus also simply be written:

x2 = r +u+F ·Δx1: ð5Þ

In this case, the transformation of a pattern is still controlled by six parameters held by u and F:

Pf g= u, v, Fxx , Fxy, Fyx , Fyy
� �

: ð6Þ

Given our objective to track the rigid motion of individual grains, it is quite reasonable to state that the transforma-
tion gradient is actually a rotation F ’ R(θ) with

RðθÞ= cosðθÞ −sinðθÞ
sinðθÞ cosðθÞ

� �
: ð7Þ

The benefit is twofold: first, the assumption of rigid motion is compelled, and second, the number of parameters to
be optimised is reduced to three

fPg= u, v, θ½ �: ð8Þ

If the straining of the pattern needs to be followed (which is not for what the soft TRACKER has been designed for), it
is still possible to assess it. In this case, a further optimisation of the displacement u and of its gradient ru can be
achieved starting with an estimate of the latter:

FIGURE 4 Transformation, in Lagrangian description, of a vector Δx1 at the
position r into a vector Δx2 at the position r + u
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ru’ cosðθÞ−1 −sinðθÞ
−sinðθÞ cosðθÞ−1

� �
: ð9Þ

2.2 | Coarse search

The tracking procedure consists in finding for each grain position r, the displacements u, v—with a pixel accuracy—
and the rotation θ so that the ZNCC between a pair of signals from two distinct images is maximised. In practice, we
minimise the function 1 − φ(u, v, θ). To obtain the displacements and rotation with a integer precision, this optimisa-
tion is done by testing a set of plausible positions and orientations picked from a rectangular search zone centred on
the tracked point that rotates with selected increments. We describe the research zone—that is, the ranges of u and v,
but also the angular range—with the set of parameters fΔuleft, Δuright, Δvup, Δvdown, N −

rot, N
+
rot, Δθg that are integer

values, except Δθ. This means that the tested positions range from x−Δuleft to x+Δuright horizontally and from y−Δvup
to y + Δvdown vertically (recall that the y-axis is oriented downwards for digital images); for each tested position, the
rotation ranges from θ−N −

rotΔθ to θ+N +
rotΔθ , with increments of Δθ are tested. All these systematic tests represent

ðΔuleft +ΔurightÞ× ðΔvup +ΔvdownÞ× ðN −
rot +N +

rotÞ computations of φ (itself is computed over a more or less large
amount of pixels according to Equation 1).

As a result of this methodical step-by-step research, the integer displacement [u, v] and the rotation increment Δθ
that induces the highest correlation coefficient φ will be used as a first estimate for the following procedure (subpixel
tracking). But, sometimes, due to the granular nature of the sample, a particle can be far from its expected position.
This situation can be recognised by a level of correlation that is too low with respect to a given threshold. The strategy
implemented in the code TRACKER to solve this problem is the rescue procedure. It consists to increase the search zone
(including the angular degrees of freedom). A second increase of the search zone is activated when the first rescue
attempt is unsuccessful. One can imagine that this procedure slows down the tracking. Fortunately, it is in fact dramati-
cally accelerated when prohibited zones defined by well-found grains are taken into consideration by prohibiting tests
on positions screened by the well-found neighbours. Figure 5 pictures this procedure: the rectangular search zone that
holds a large number of pixels is reduced by a factor lower than 1/8. In practice, this factor is generally well above.

As a consequence of the rescue procedure, the processing time can be increased. However, in some situations, it is
possible to take a small advantage of a certain order in grain processing. For example, if the pattern has a better quality
in the larger rods and believing that they are less prone to jumps, the smallest grains can be processed at the end in
order to take benefit of the screening of the other grains. Another situation for which the processing order counts is the
case where very different displacement amplitudes are expected depending on their position. This is clearly the case for
simple shear straining where the displacements linearly increase with the particle height: an order for processing from
the bottom to the top of the sample may help to screen the extended search-zone areas following the detection of a res-
cue. In this way, the first search area can be kept relatively small, and the hope is to reduce, thanks to the screening of
well-found particles, the areas that would be expanded. There is therefore a subtle task of finding the right set of
parameters.

The choice of the size of the pattern to correlate is also quite critical. Figure 6 illustrates this point. On the left, we
see two images shot consecutively as one Schneebeli rod moved more than the others; this grain is marked by a yellow
cross. The images on the right show the correlation levels obtained between the original position of the jumping grain

FIGURE 5 Sketch of a rescue procedure. White grains are already well correlated

and the red grain needs “rescuing” because of its large displacement between two

picture shots. The dashed box is the rectangular search zone that was increased to find

the red grain after a first unsuccessful attempt with a very small search zone. Taking

into account steric exclusions (light grey zones) due to the local geometry of the

assembly of particles and the diameter of the red grain, the blue spaces are places were

the centre of the red grain could be. In practice, the blue zone is less the 5% of the area

associated to the rectangular search zone
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in image 1 and all the other achievable pixels in image 2. This is plotted for different sizes of correlated patterns. It can
be seen that, up to a size of 17 × 17 pixels, the correlation-level maps have multiple peaks, which does not clearly and
precisely define a good and unique estimate of the new grain position in image 2. For the 17 × 17 pattern, on the con-
trary, a single spot is well defined, and it is even more focused for the 33 × 33 pattern. One might think that the larger
the pattern, the better the correlation at the pixel scale, but the map for the 65 × 65 pattern shows that several spots,
centred on other grains can also be found because of a certain sameness of the grains and their overall vicinity. The
appropriate size of the patterns is therefore related not only to the speckle but also to the size of the grains. For
multidispersed rods in the 1γ2ε device, a circular pattern with a slightly smaller radius than the smallest grain should
be used so that the tracking accuracy is consistent for all grains.

2.3 | Fine search

To obtain a subpixel resolution, the signal from second image has to be built from interpolated values of grey levels over
the subset S2. In this way, the position x2 in Equations (1) and (3) will be a floating point value whereas it was an inte-
ger value in the previous pixel scale procedure. The software TRACKER implements bilinear, bicubic, or biquintic func-
tions to perform the interpolation, partial derivatives being computed by centred finite differences. To find the floating-
point values of [u, v, θ] that best optimise φ, the Powell's conjugate direction method is used[10,11]. This method does
not need to define a function for the gradients of φ (∂φ/∂u, ∂φ/∂v, and ∂φ/∂θ), but as for any other optimisation tech-
niques for multivariable functions (e.g., random search, univariate search, simplex search, conjugate search directions,
steepest descent, conjugate gradient methods, and Newton's methods), a ‘good’ starting point is required, and should be
enough to get the job done. This starting point is the integer values of [u, v, θ] obtained from the preceding pixel-
accuracy tracking.

Figure 7 illustrates, on an actual case, the unidimensional form of the correlation function φ along the line passing
through the centres of the jumping grain in images 1 and 2 φ is plotted as a function of both the horizontal displace-
ment u and the vertical one v as they are related to the inclination of the centre-to-centre line. The three curves corre-
spond to linear, cubic, and quintic interpolations, and the inset is a zoom focused on the peak (where is the best
probability of movement). It is quite clear that the position found depends on the interpolation function chosen; how-
ever, it is essentially the linear case that is different from higher order functions. Quintic interpolation does not seem to
differ significantly from cubic one. The plots on the right part of Figure 7 also instructs us that linear interpretation

FIGURE 6 Effect of pattern size on the correlation level field. (left) Two images shot at close moments when a particular grain moves

strongly with respect to the others. (right) Correlation level colour map (NCC) for different square pattern sizes
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induces an image mapping which is a C0 function. This fact implies that the mapping of φ reflects this feature and sug-
gests that linear interpolation is to be avoided.

If a deformation measurement of the tracked pattern was required rather than a rotation, the starting point could
be set from an initial guess of the displacement gradients:

u, v,
∂ux
∂x

,
∂ux
∂y

,
∂uy
∂x

,
∂uy
∂y

� �
with

∂ux
∂x

=
∂uy
∂y

’ cosðθÞ − 1 and
∂ux
∂y

= −
∂uy
∂x

’ − sinðθÞ, ð10Þ

where [u, v, θ] are obtained from the preceding pixel-accuracy tracking.

2.4 | Truncation errors

To avoid accumulation of digital truncation errors in the sequential processing of the photographs, we took benefits of
the rigid nature of the motion, that is the fact that the pattern should remain unchanged after the transformation
(translation and rotation, but no—or very limited—distortion of the tracked pattern). Thus, the cross correlations are
usually not performed between successive photographs (n ! n + 1). Instead, they are directly carried out between the
first and the current photographs (1 ! n) so that no digital truncation error occurs. This solution can be completed effi-
ciently if the transformation 1 ! n − 1 is already known, while it provides an initial guess of the solution (the search
zone is around the last known position, not around the reference position).

Figure 8 (left) shows the evolution of the mean error and standard deviation hΔui ± σu as the imposed displacement
u• on synthetic speckled images is increased. Despite the absence of shooting artefacts in synthetic images, errors with
severest truncations (i.e., when the reference image is reset for each couple of images) are systematically higher in abso-
lute values than the tracking without truncation (i.e., the reference image is unique and remains the same). Anyway,
errors remain insignificant (less than 10−7 pixels) with synthetic images. With actual photographs, things are quite dif-
ferent as can be seen in Figure 8(right). The meaning of an error with real images is different because, unlike synthetic

FIGURE 7 (left) Zero

mean normalised cross

correlation φ plotted as a

function of a displacement (u

and v) along the line from the

initial position of a grain to its

final position, for different

interpolation functions (linear,

cubic, and quintic). (right) Piece

of interpolated greyscale maps

with (bi)linear and (bi)cubic

functions

FIGURE 8 Truncation error as a

function of an imposed displacement:

(left) with synthetic images, (right) with

photographs. The case without

truncation is obtained when any image

is correlated with the first image, and

the case with truncation is obtained by

systematically correlate pairs of

successive images
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images, the value of the imposed displacement is not mastered. The error is therefore in this case an increment of dis-
placement with respect to the displacement obtained without truncation. We can see that the orders of magnitude are
much more significant this time because errors of 1 or even 2 pixels can occur after processing only five pairs of
photographs.

Annoyingly, if the images are of poor or nonuniform quality, the solution without truncation is not possible because
the patterns would be really too altered as the sample strain evolves. It is therefore necessary to change the reference
periodically, which introduces a significant accumulation of errors in the assessed displacements.

3 | PRE-PROCESSING FOR 1γ2ε TESTS

3.1 | Initial particle positions

An application has been developed specifically for the tracking of circular grains in 1γ2ε photographs. We need to start
with the first photograph of the series—a 16-bits image with a single colour channel—that will serve as the reference
picture (that is with reference positions of the particles) in the tracking procedure. The 2D particles, and more precisely
the visible section of the Schneebeli rods, are supposed to be circular. The procedure follows a number of stages that
are outlined hereafter:

• Figure 9b. Removing the parts of the image that are not of interest. This is done by setting a chosen grey-level—
generally 0—to the pixels that stand outside the sample region. For the device 1γ2ε, the corners of the sample frame
are hinges, some of which are equipped with force sensors, which correspond to discs on the images.

• Figure 9c. Smoothing many times the sample zone of the photograph to blur the imperfections that could compro-
mise the subsequent operations. This step is a preprocessing for the next step of segmentation. It limits the number
of isolated black spots inside the grains.

• Figure 9d. Performing a segmentation to separate the particles (white or maximum grey level) from the ‘voids’ (black
or zero grey level). The threshold used is defined from the histogram of the sample zone that have eventually been
smoothed or from a greyscale profile that passes through grains and voids to be able to decide on the correct separa-
tion value.

• Figure 9e. Computing the distance map that encode, in the grey level of the pixels, the minimum distance of each
pixel with a void (black) pixels. This step is the most time consuming, but it can be optimised and parallelised to
finally be done in less than a minute on a modern computer.

FIGURE 9 (a–f)

Illustration of the different steps

for the initial identification of

the position and radii of the

grains
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• Figure 9f. Extracting the particle positions and radii in pixel units. In a nutshell, the procedure consists in iteratively
finding the largest distance, which necessarily corresponds to the position of the largest radius, and then masking the
grains with black (zero grey value) so that it can no longer be found. An image with superimposed green disks, simi-
lar to Figure 9f, is generated to check that the position and radius of the grains have been found in a way that is satis-
factory to the eye.

Before implementing this procedure in a numerical tool coded in C++, it was necessary to spend about a day to
identify the centres of 2,000 grains. The use of different applications was necessary, and multiple operator interventions
were required to to correct errors ‘by hand’. The current procedure identifies centres of the same number of grains in
less than a minute, with substantially fewer errors.

3.2 | Accuracy of the positions of particle centres

Another source of inaccuracy when tracking a particle may come from the approximate knowledge of the position of its
centre. If this position is known with a pixel resolution (integer value), the assumption of rigid motion will make the
rotation of the particle not affected. On the contrary, the accuracy of displacement will be lower. Consider for
example an error e on the center position, the accuracy of the tracking being ϑ (sum of maximum bias and maximum
random error) for rotations. Actual inaccuracy of the displacement of the particle centre would be supplemented
with ±2ϑe.

To limit this additional error, e should be reduced as much as possible. The determination of the particle centre r is
a matter of image processing. In the current procedure, a segmentation of the image is proceeded followed by several
erosions (watershed) until a single pixel remains for each particle. This last pixel is considered as the particle centre.
Another strategy would be to account for the grey-level gradients at the particle borders to identify more precisely
r (with subpixel accuracy). However, whatever the strategy used, the position found cannot be identified with certainty
as the authentic centre. For this reason, it is arguably better to be aware of the additional error.

In TRACKER, the second strategy is used to refine the values of position and radius of each grain. The integer position
of a grain—found in the preceding stage—serves as a starting point for outward-directed rays. For each half ray, the
greyscale profile enables the identification, by means of a threshold value, of the distance between the temporary centre
and the boundary of the grain. A number of points on the periphery of the grain then have an assigned position all-
owing the position and radius of a circle to be found (it best passes through these points). Because the reference position
is an integer, the rest of its value is stored in an initial subpixel eccentricity e (which is a fake displacement lower than
0.5 pixel). It is actually possible to use noninteger reference positions, but doing so requires to perform a grey interpola-
tion on the reference image in addition to the interpolation of the target image. Although doable, we did not choose this
solution because it required significant changes in the source code, and it could have led to a slowing down of the corre-
lation algorithm which is sometimes also employed to track movements on continuous materials. The integration of
this rather subtle correction was thus postponed to the post-processing phase. To benefit from the improved accuracy
associated with the initial eccentricity, it is necessary to take into account the initial displacement in postprocessing by
defining any position as r + u + R(θ) · e; see Figure 10.

FIGURE 10 Illustration of the consideration of subpixel eccentricity e

(oversized in the sketch)
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4 | CORRELATION ERRORS WITH IDEALISED IMAGE

In a previous study, TRACKER accuracy was estimated from synthetic images provided by[12]. These synthetic images sim-
ulated the rigid motion of a speckle texture captured by an idealised camera (perfect sensors with fill-factor equals to 1).
In the present study, two series of images were independently generated with different kinds of transformation: pure
horizontal translation and homogeneous vertical straining due to the increasing displacement of the points on either
side of the vertical centre line. The patterns for these accuracy tests was generated by Perlin noise, and the achievement
of best qualities was not sought for these synthetic images. The objective here is to test the dependence of the subpixel
accuracy with respect to the degree of the polynomial function (bilinear or bicubic) used to interpolate the image and
the size (pixels) of the squared patch.

4.1 | Pure translation

An imposed displacement u• was varied from 0 to 1 pixel with a step of 0.02 pixel. We compared u• with the
corresponding displacement ui of each of the 400 points i followed to determine their displacement error: Δui = u• − ui.
The arithmetic mean of Δui defined the systematic error (or bias):

hΔui= 1
n

Xn
i=1

Δui: ð11Þ
In addition, the standard deviation (random error) σu was computed:

σu =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

Xn
i=1

Δui−hΔuið Þ2
s

: ð12Þ

As for other accuracy studies[13,14], displacements were evaluated at all positions of a regular square grid in the ini-
tial image, with a pitch such that correlation windows at adjacent positions do not overlap, ensuring the statistical inde-
pendence of the corresponding errors.

Figure 11 shows the bias and the random error obtained for imposed translations u• in the horizontal direction. In
this representation, standard deviations are indicated with error bars, but all data are also shown (which is never done
to our knowledge). This allows a more correct view of the dispersion of random errors. The observation that may seem
most disturbing is that the bias is less close to zero when the order of the interpolation function is increased. This is in
fact the price to pay so that overall random errors are lowered. It can be seen, however, that biquintic interpolation does
not bring any improvement, either for bias or for random errors. For a given size of patterned patch, random errors are
smaller for bicubic than for bilinear interpolations.

Focusing now on the size of the tracked patch, it can be observed that although the bias is almost independent of the
pattern size, the random error is decreased with the size of the pattern (whatever the degree of the interpolation function).
These results are consistent with those of Bornert et al.[14] or Dupré et al.[13]. Here, for this particular synthesised pattern,
the worst error in translation for the largest pattern (33 × 33) is in the order of 2 × 10−2 pixel regardless of the interpolation
function, even if the error seems to be improved from the point of view of the standard deviation. For smaller patch sizes,
bicubic interpolation has a more definite gain over overall accuracy. Finally, the bilinear interpolation seems a sound
choice for large patterns (in terms of accuracy in the displacement, with the use of synthetic images), while cubic interpo-
lation should be more appropriate when the size of the patterns is limited (e.g., by grain sizes).

This analysis, even if it is carried out on synthetic images without aberration, makes it possible to realise the equal
relevance of the quality of the pattern and of the size of the tracked patches. The goodness of a pattern must therefore
be judged also in terms of the usable patch size. However, it is helpful to consider that a given pattern, interpolated with
any function, will systematically give better results with larger patterns as suggested by Figure 12.

4.2 | Homogenous straining

When soft-grain movements are tracked from the image of 1γ2ε loaded granular sample or some textured points are
tracked within a close view of particles in contact, noticeable finite strain can occur. It is then pertinent to wonder to
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what extent such deformations can alter the measured displacements. To address this question, synthetic images have
been generated, still with Perlin noise, by imposing a vertical swelling strain ε• ranging from 0 to 0.1 with increments
of 2 × 10−3. By knowing the position of vertical middle r0x of the images, the expected vertical displacement of for any
coordinate rx is uðrxÞ = ε•ðrx − r0xÞ. This allowed us to define the error as

ΔuðrxÞ = uðrxÞ − ε•ðrx − r0xÞ ð13Þ

Figure 13 shows this error Δu as a function of the imposed strain ε• for three sizes of pattern and when using bilin-
ear or bicubic interpolations. Three observations can be made by looking at these plots: (a) the errors are not affected
by the choice of interpolation function, (b) random errors are linearly increased with increasing deformation, and
(c) increasing the size of the pattern magnifies the random errors in case of finite strain, but the bias does not seem
affected. This last remark might seem counterintuitive, but is in fact expected because a given elongation generates
more change over a large area than over a small area.

It must be clarified that it would be sufficient to track the deformations of the correlation patch to annihilate the
errors—by optimising the parameters of Equation (6) for instance. However, in the applications we are interested in,
the deformations within the tracked speckles on grains are not at all homogeneous because they are localised at the
vicinities of contact zones. It is then convenient not to include the edge of the grains in the thumbnail which is tracked.

FIGURE 12 Maximum random error as a function of the inverse of pattern size

(Nm is the number of pixels in a patch)

FIGURE 11 Displacement errors Δu as a function of imposed displacement u• for three sizes of tracked patches and increasing degree

of the interpolation function. The blue dots are the raw displacement errors, the black dots are the bias errors (arithmetic means), and the

error bars are the random errors (standard deviations)
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5 | CORRELATION ERRORS WITH REAL IMAGES

For real images of moving bodies coming from a digital camera, the estimate of the error for displacements and rota-
tions is rather complex because it implies a perfect mastery of the whole measurement chain. In particular, the digital
images are captured on a Bayer matrix containing ordered red, green, and blue cells (two greens for one red and one
blue) so that each pixel of the produced image will have three colour channels. Each channel is built from a mixing rec-
ipe, called debayering or demosaicing, supposed to produce the best image according to a criterion of its choice. With
DIC, nobody cares about the subjective beauty of the image, but the accuracy of the tracked displacements is the only
feature required. Different tests (not shown here) led us to conclude that the simplest debayering formula (filter) did
the trick and no clear trend could be drawn from the choice of filter. So simplest linear filter is systematic employed.
The best solution would be to choose a camera without bayer matrix (raw images directly in greyscale).

The accuracy study for real images is here performed over photographs of an assembly of about 2,000 rods submit-
ted to a quasi-static shearing like the one shown in Figure 1( _γ= 8:2 × 10−5 s−1). The camera was a Nikon D3X
(24.4 MPixels) associated with a lens of fixed focal length of 180 mm(Tamron SP AF 180 mmF/3.5 Di LD[IF] MACRO
1:1). We used also, in other tests, a Nikon D850 (42.5 MPixels) associated with a lens of fixed focal length of 180 mm, or
a PhaseOne IQ180 digital back (80 MPixels) associated with another fixed focal lens (Schneider Kreuznach, AF
240 mmLS f/4.5 IF). Both lens correspond to long focal lengths, and they were chosen to limit the field of view because
the shortest values make the rod axis appear more parallel on the photographs. The first lens induces a quite homoge-
neous distortion while the second concentrates the distortions at the photograph edges. The camera was always placed
relatively far from the shot sample. Along the shear test, pictures were shot every 5 s. The correction of optical distor-
tion which requires a specific procedure (see Appendix D1) was either performed or not to examine the consequences.
Figure 14 shows the bias and random error of the measured variations of length ΔS, placed within the largest grains,
throughout the shear test. It is shown that, in a first phase up to γ ’ 0.08, ΔS ≤ 0.1 pixel, with an average of
hΔSi≤ 0.01 pixel. The benefits of the distortion correction is clear because the mean value hΔSi remains close to zero,
whereas a very clear drift is observed without correction. In a second phase of the shear for γ above 0.08, the error
increased for an unnoticed reason, and the drift was worse. We can see that the distortion correction does not really
improve the random errors on ΔS, but the bias is on the other hand very significantly reduced.

To perform a PIT, any other lens could be used, and if the focal length is particularly short, the need of correction of
the distortion is obvious. But correction is always necessary if a high degree of measurement accuracy is required. The
plots of Figure 14 shows that an average error of about 0.02 pixels can be avoided by correcting the distortion, which is
nevertheless only slightly perceptible to the eye (after meticulous inspection, it is possible to notice that the circularity
of the grains is only slightly affected at the edge of the image). Of course, the measurement of the error ΔS is based on
the assumption that the grains do not deform noticeably. We carried out compression tests on grain pairs with forces

FIGURE 13 Displacement

errors Δu as a function of

imposed vertical strain ε• for

three sizes of tracked patches

and increasing degree of the

interpolation function. The blue

dots are the raw displacement

errors, the black dots are the

bias errors (arithmetic means),

and the error bars are the

random errors (standard

deviations)
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40 times greater than the typical forces in the experiments. With about 2,000 pixels per diameter and a well-established
correlation tool[15], we found that both spherical strains and deviatoric strains remained extremely small inside the
grains, and concentrated only at the vicinity of the contact.

The objective of distortion correction as explained in Appendix D1 is to guarantee that the same amount of displace-
ment is quantified in the least fluctuating way, whatever the location in the image. In other words, the optimisation of
the equiprojectivity criterion on a rigid body movement covering the entire image seems to us self-sufficient.

6 | EXAMPLE OF USING THE PIT

The use of the PIT technique is presented here through one example that requires a high accuracy of the tracked dis-
placements: the measurement of displacement fluctuations in a sheared granular assembly[8,16,17]. The work of Misra
and Jiang [18] is, to our best knowledge, the first scientific reference showing a map of experimentally measured fluctua-
tions. In this paper, the authors show some maps of deviations from linear displacement fields (we usually call it ‘dis-
placement fluctuations’). It has been shown, in recent studies, that a fluctuation analysis requires consideration of a
deformation window in the definition of a displacement fluctuation. Typical observations of ‘turbulent-like’ vortices in
the fluctuation field—called ‘clustering patterns’ in[18]—are sensitive to the macroscopic deformation increment under
consideration. In Misra and Jiang[18], the increment is not specified, but it should be relatively large and the statistical
distribution of the components of displacement fluctuation should certainly be close to a bell-shaped Gaussian distribu-
tion. For decreasing deformation windows, the Gaussian distribution of normalised fluctuations tends to broaden and
correspond more closely to a q-Gaussian distribution, while nonnormalised fluctuations become smaller and smaller
and therefore difficult to measure on digital images. The need for precision was particularly felt in the analysis of these
small fluctuations. Other applications that require a good accuracy are the detection of contacts and the assessment of
elastic contact forces as in the work of Tolomeo et al.[19]. The purpose here is to show a practical use of the technique
for measuring displacement fluctuations rather than enter into too deep understanding of the underlying features as
originally described in Radjai and Roux[20].

Displacement fluctuations in granular materials are a direct manifestation of grain rearrangement, which is the
basic mechanism of irreversible deformation; fluctuations play a similar role as dislocations in crystals. The analysis
of fluctuations is a hot topic in granular physics and mechanics, which is almost entirely investigated by means of
numerical discrete element model (DEM). To assess the fluctuations of displacement in the course of deformation,
two possible displacements of each grain during a shear strain increment Δγ are considered. The first is the actual
displacement vector δr(γ, Δγ), which depends on both the size of the strain increment Δγ and the level of shear
strain γ at the beginning of the increment. The second displacement vector δr?(γ, Δγ) is the displacement dictated
by a homogeneous (affine) continuum strain field, that is, the displacement that the grain's centre would have if it

FIGURE 14 Mean and standard deviation

of length variations in the course of shearing:

(red) without and (blue) with correction of

distortion
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moved as a material point within a continuum. The fluctuation of the displacement is defined as the difference
between these two displacements:

uðγ, ΔγÞ= δrðγ, ΔγÞ−δr?ðγ, ΔγÞ: ð14Þ

Displacement fluctuations can be conveniently normalised by dividing u(γ, Δγ) by the product Δγhdi (where hdi is
the mean diameter of the grains), which can be interpreted as the average displacement of the grains in the strain incre-
ment Δγ. This normalised fluctuation, Vðγ, ΔγÞ = uðγ, ΔγÞ= hdiΔγð Þ, can also be interpreted as a local strain fluctuation
which is in turn divided by the size of the global strain increment Δγ.

Figure 15 shows the probability density function (pdf) of the horizontal component Vx of normalised fluctuations
for two different shear strain increments Δγ. Whatever the value of Δγ, the space average of this measure of fluctua-
tions is zero, which is to be expected for a homogeneous deformation. A key observation is that the pdf curve exhibits a
wider range of fluctuations with decreasing Δγ. An extremely accurate measurement of fluctuations is necessary to be
able to define their statistical distribution. Besides, in this case, it is not a simple Gaussian but rather a q-Gaussian dis-
tribution function as introduced by Tsallis[21]. The evolution of such parameters (here the parameter q of the q-Gauss-
ians) gives valuable clues on fundamental aspects of the plasticity of granular media, and it is therefore absolutely
essential to push the technique to its limits, in terms of accuracy, in order to obtain the most useful measures possible.

7 | CONCLUSIONS

A new parallelised code called TRACKER dedicated to the tracking of nonsmooth trajectory of particles was presented.
The software uses the DIC technique coupled with geometrical rules to dramatically increase the efficiency of the cross
correlations. These tremendous improvements allow for an accurate and fast assessment of the grain kinematics with-
out ‘losing’ any of them. The proposed strategy, named PIT, was successfully used to exhibit very interesting features of
particle fluctuations in sheared dense granular systems[8,9], but also to extract some components of fabric data within a
granular packing, or assess the contact forces between the grains[19].

Many strategies have been implemented to achieve the best possible accuracy: rescue procedure, interpolation func-
tion, correction of distortion and of small parallax flaws, reduction of truncation errors, reduction of errors due to the
eccentricity of the tracked points, and correction of parasitic movements (not shown in this paper). Tests were made on
computer-generated images in pure displacement and also in homogeneous deformation. Then tests with real images
were also carried out. The finding is that it is difficult to do better in terms of the tracking algorithm. The other possibil-
ities of improvements do not relate directly to the technique but to the quality of the patterns and digital images. So, to
further improve accuracy, work must be done on image acquisition and pattern quality.

ACKNOWLEDGEMENTS
We would like to express our great thanks to François Bonnel without whom we would not have had the opportunity
to shoot with high quality equipment. We are indebted to our former students, Mathias Tolomeo and Marta Stasiak,
who contributed through discussions and intensive use to the effective development of the computer tools presented in

FIGURE 15 Probability density function of the horizontal

component of the displacement fluctuation Vx for two values of shear

strain increment Δγ (red squares) in case of a simple shear test on a

sample of around 2,000 rods in the device 1γ2ε. Symbols are PIT inputs

(red squares: 2 × 10−3, blue circles: 10−1). The curves are q-Gaussian fits

(red: q = 1.51, blue: q = 1.16)

14 of 19 RICHEFEU AND COMBE



this work. Our thanks also go to Allbens P. F. Atman who took part in the scientific discussions related to the experi-
mental measurements of displacement fields. The Laboratoire 3SR is part of the LabEx Tec 21 (Investissements
d'Avenir, Grant Agreement No. ANR-11-LABX-0030).

ORCID
Vincent Richefeu https://orcid.org/0000-0002-8897-5499

REFERENCES
H. Joer, J. Lanier, J. Desrues, E. Flavigny, Geotechnical Testing Journal 1992, 15(2), 129.
G. Schneebeli, Comptes Rendus de l'Academie des Sciences 1956, 243(1), 125.
F. Calvetti, G. Combe, J. Lanier, Mechanics of Cohesive Frictional Materials 1997, 2(2), 121.
E.-M. Charalampidou, G. Combe, G. Viggiani, J. Lanier, in Powders and grains, (Eds: S. L. Masami Nakagawa), AIP Publishing, Golden,
Colorado 2009.
L. Sibille, F. Froiio, Granular Matter 2007, 9, 183.
T. C. Chu, M. A. Sutton, W. F. Ranson, W. H. Peters, Experimental Mechanics 1985, 25(3), 232.
S. A. Hall, D. Muir Wood, E. Ibraim, G. Viggiani, Granular Matter 2010, 12(1), 1.
V. Richefeu, G. Combe, G. Viggiani, Géotechnique Letters 2012, 2, 113.
G. Combe, V. Richefeu, G. Viggiani, S. A. Hall, A. Tengattini, A. P. F. Atman, Tracker: A particle image tracking (PIT) technique dedicated
to nonsmooth motions involved in granular packings, in Powders and grains 2013.
M. Powell, The Computer Journal 1964, 7, 155.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes 3rd edition: The art of scientific computing, Cambridge
University Press 2007.
J.-J. Orteu, D. Garcia, L. Robert, F. Bugarin, A speckle-texture image generator, in Proc. SPIE 6341, Speckle06: Speckles, From Grains to
Flowers, 63410H 2006.
J. C. Dupré, M. Bornert, L. Robert, B. Wattrisse, Digital image correlation: Displacement accuracy estimation, in Proceedings of the 14th
international conference on experimental mechanics 2010, 31006.
N. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel,
P. Vacher, B. Wattrisse, Experimental Mechanics 2009, 49(3), 353.
P. Vacher, S. Dumoulin, F. Morestin, S. Mguil-Touchal, Journal of Mechanical Engineering Science 1999, 811.
G. Combe, V. Richefeu, M. Stasiak, A. Atman, Physical Review Letter 2015, 115, 238301.
L. Viallon-Galinier, G. Combe, V. Richefeu, A. P. F. Atman, Entropy 2018, 20(11), 862.
A. Misra, H. Jiang, Computers and Geotechnics 1997, 20, 267.
M. Tolomeo, V. Richefeu, G. Combe, J.-N. Roux, G. Viggiani, International Journal of Solids and Structures 2019, 187, 48.
F. Radjai, S. Roux, Physical Review Letter 2002, 89, 064302.
C. Tsallis, Journal of Statistical Physics 1988, 52, 479.
M. A. Sutton, J.-J. Orteu, H. Schreier, Image correlation for shape, motion and deformation measurements: basic concepts, theory and applica-
tions, Springer 2010.
Y. Su, Q. Zhang, X. Xu, Z. Gao, Optics and Lasers in Engineering 2016, 86, 132.
D. C. Brown, Photogrammetric Engineering 1966, 32(3), 444.

How to cite this article: Richefeu V, Combe G. The particle image tracking technique: An accurate optical
method for measuring individual kinematics of rigid particles. Strain. 2020;e12362. https://doi.org/10.1111/str.
12362

APPENDIX A: QUALITY OF THE PATTERN SIGNALS

To track particles on a 2D image, the speckles that are photographed on the visible faces of the rods will not be of equal
quality with respect to the accuracy of the displacement measurements. This accuracy will of course depend on the
speckle definitions but also on the pattern sizes. The presence of well marked greyscale gradients also seems to play an
important role in the reliability of particle tracking. The literature essentially proposes two types of indicators to quan-
tify the quality of a pattern: one based on its morphology while the other is based on its similarity to itself.

In the use of the tool TRACKER for our research applications, we have chosen two measures of the pattern quality
based on its self-similarity: its Fourier transform and the mean Pearson correlation of any small patches within the
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pattern as a function of their distance (self-correlations). Figure A1 shows, for different pattern patches of size 101×101
(extracted from a dataset of the DIC challenge, https://sem.org/dicchallenge), the corresponding Fourier transforms
and also a plot of self-correlations. It is important to notice that the plot of self-correlations is not really identical to
what is described in the literature, that are the auto-correlograms (see, e.g.,[14,22]); but the underlying idea is exactly
the same. The Fourier transform enables the identification of a characteristic size of a spot (frequency bandwidth), and
the self-correlation plot makes it possible to define a distance δself reached for a half-reduced correlation.

What must be noted is that none of these indicators is capable of discriminating with absolute certainty a good from
a bad pattern. Nevertheless, it provides access to quantifiable parameters which, with a certain amount of expertise, can
be used to guide the production of painted speckles. Also, when a tracking does not go well, the explanation may come
from a pattern which is too poor in quality, and the assessment of a quality indicator is quite useful in this case. To pre-
vent relying too much on the expertise of operators alone, the use of several indicators is advisable.

Table A1 shows the values of four indicators: (a) the radius δfft (inverse of the spatial frequency) of the Fourier trans-
form spot, (b) the distance δself of half-reduced correlation in the self-correlation diagram (obtained with a 5-by-5
patch), (c) the distance δauto of half-reduced correlation in the classical auto-correlogram, and (d) the mean intensity
gradient δmig as defined in Su et al.[23]. This latter indicator provides information on the greyscale gradients that would
be extreme in the case of a pattern made of black dots every 2 pixels on a white background (upper limit), but also in
the case of a mono-level grey image (lower limit). It is defined as follows:

δmig =
1

WH

XW
i=1

XH
j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrxIijÞ2 + ðryIijÞ2

q
, ðA1Þ

FIGURE A1 (a–f) Quality indicators of some speckle patterns from the DIC Challenge Dataset (https://sem.org/dicchallenge). Top

line: 100 × 100 digital image with different patterns. Middle line: the corresponding Fourier transform (power increases from white to black).

Bottom line: mean Pearson correlation of 101-by-101 patches on the same image as a function of their distance. This latter plot of self-

correlations, somehow analogous to a auto-correlograms, shows the distance reached for a half-reduced correlation; this distance, noted δself
and expressed in pixel, defines a measure of the pattern quality (more accurate DIC may be obtained with smaller value of δself)

TABLE A1 Four indicators of pattern quality, δfft, δself, δauto, and δmig, computed on 101-by-101 patches. The smallest values are meant

to provide the best quality, except for δmig which should not be too small nor too high

Pattern δfft δself δauto δmig

(a) 0.07 0.8 3.6 0.12

(b) 0.08 1.8 2.1 0.06

(c) 0.08 1.9 2.1 0.17

(d) 0.05 1.0 2.9 0.04

(e) 0.10 4.4 4.7 0.11

(f) 0.08 1.4 1.9 0.16

16 of 19 RICHEFEU AND COMBE

https://sem.org/dicchallenge
https://sem.org/dicchallenge


where rx and ry stand respectively for the grey-level gradient in the x- or y-direction, W and H are the width and
height of the cropped zone in the pattern image.

From Figure A1 and Table A1, some interesting observations can be drawn. (b) and (c) appear to be of comparable
quality with the exception of the criterion on δmig that exhibits extreme values. This is due to an image that is too dark
for (b) (which flattens the gradients) and too high in contrast for (c) (characterised by very high gradients at the transi-
tions between white and black). For this reason, pattern (a) or (f) would be a better choice to obtain greater measure-
ment accuracy because the indicators are on the whole more beneficial. It is instructive to see that patterns (b) and
(d) are not as bad as they seem and that on the contrary, pattern (e) is clearly a wrong choice even if everything suggests
otherwise. It is nevertheless unfortunate to realise that some empiricism is still needed in the definition or choice of
sound patterns. It is conceivable that a useful quantification of the quality of a pattern, with respect to the accuracy it
would allow, can be established by combining indicators δauto and δmig as a unique marker. For instance, δαautoδ

β
mig ,

where α and β have to be searched by trial and error, would be a candidate. However, this possibility has not yet been
studied.

APPENDIX B: PARALLELISATION

Most numerical procedures during the tracking, including rescue procedures that are carried out subsequently, can be
applied for each grain regardless of the others. This makes the parallelisation very easy to implement in a context of
shared memory (OpenMP). Figure B1 shows the relative gain obtained on two computers as a function of the number
of threads requested. The relative gain G is defined as the duration (CPU time) obtained with a unique thread divided
by the duration obtained with Nth threads. The first computer is a MacBook Air laptop with a single dual-core Intel
Core i7, and the second one is a pair of Intel Xeon processor E5-2683-V4 with 40 MB of cache memory (hyperthreading
no activated); the number of available threads is 2 and 32, respectively. Regardless of the hardware used, a linear
increase in relative gain is observed up to the number of available threads. Above this point, the gain may drop very
slightly, but no longer varies.

Still in the same plots, the relative gain G was calculated separately for the part of the algorithm dedicated to the
pixel-by-pixel search and for the subpixel optimisation. The scalability of these two parts is similar, but two features are
particularly intriguing in the plot with 32 threads: (a) the rate ΔG/ΔNth of relative gain is lowered from four threads
upwards, and (b) the odd number of Nth induces lower gains, perhaps because of memory management.

APPENDIX C: DISTORTION AND PARALLAX OF ACQUIRED IMAGES

The projection of the physical objects onto the photographs is not strictly rectilinear because of (i) imperfect perpendic-
ularity of the optical axis with the plane of the assembly (parallax defect) and/or (ii) the lens characteristics (distortion).

The deviation of this projection, called distortion, makes the relative distances not uniform over an image. The dis-
placement measurements are thus affected by the distortion as a function of the position of the tracked pixel, and it is

FIGURE B1 Gain obtained with respect to the calculation with just one thread as a function of the number of threads used (this

number can be larger than the available cores): (left) for laptop with single dual-core processor, (right) for a computer with four octo-core

processors. The red connected dots are for the time required for the pixel-by-pixel search phases, and the blue connected dots refer to the

times required for the sub pixel search phases
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increased for large displacements (that can be of the order of third the photograph width for a shear test). To overcome
this problem, a procedure based on a decentring distortion model that account for both optical distortion and parallax
defect has been implemented. This model makes use of a set of parameters {ϕd} to determine the actual
(i.e., undistorted) position r? = ½r?x , r?y � of a pixel from its current position r = [rx, ry]. The nonlinear operator D used is
the optical distortion model of Brown[24] that reads

r? =DfϕDgðrÞ �
r?x = rx + dxðK1ρ2 +K2ρ4 +K3ρ6Þ+ ðP1ðρ2 + 2d2xÞ+2P2dxdyÞð1+P3ρ2Þ
r?y = ry + dyðK1ρ2 +K2ρ4 +K3ρ6Þ+ ðP1ðρ2 + 2d2yÞ+2P2dxdyÞð1+P3ρ2Þ

,

 !
ðC1Þ

where d = [dx, dy] is the position r relative to the distortion center cd = ½cdx , cdy �; ρ = |d|; K1, K2, and K3 are radial distor-
tion coefficients; and P1, P2, and P3 are tangential distortion coefficients. Figure C1 gives an illustration of what a distor-
tion may look like. The set of distortion parameters fϕDg is thus constituted by the eight-parameter set fcdx , cdy , K1, K2,
K3, P1, P2, P3}.

To correct distortions and parallax simultaneously, a speckled rigid pattern that fill the photograph is shot in two
different positions. A number of pixels that are dispatched on the whole image to define a set of positions {ri} are then
tracked to obtain their corresponding displacements {ui}. Corrected positions fr?i g and displacements fu?

i g can be gen-
erated by applying the operator DfϕDg . Finally, the parameters of distortion must lead to a displacement field that best
meet the equiprojectivity criterion. This parameters should thus minimise the following function:

ΨfϕDg frig, fuigð Þ=
X
i

X
j> i

ðr?j−r?i Þðu?
j−u?

i Þ
			 			, ðC2Þ

where fϕDg is the set of parameters to be optimised. Usually, before starting the optimisation, all parameters are set to
zero, except the distortion center which is initially placed in the center of the image. In addition, the equiprojectivity
criterion is in practice verified on several image pairs p, which implies minimising a sum of errors

P
p
Ψp given by

Equation (C2).
At this stage, it can be noticed that Equation (1) actually performs a distortion operation rather than an inverse-

distortion one. However, we performed a number of tests of distortion correction by using the reverse operation D−1

and found that the correction quality was of the same order; ΨfϕDg ’ ΨfϕD−∞g. Because it is precisely the only condition
that matters, the form of Equation (C2) is generally used (as usually done in the literature).

To feel the consequences of the distortion on the displacement errors obtained, let us note a corrected displacement
u? as the difference of corrected position of a given point on a pair of photographs R? − r?. Introducing the distortion
operator, the relative displacement error expresses as

u?�u= Dðr+uÞ−DðrÞð Þ�u, ðC3Þ

where the symbol � (Hadamard division) has to be understood as a component wise division. It is interesting to notice
from this expression that

(1) the relative displacement error depends on the displacement magnitude itself,

FIGURE C1 Illustration of what the frame of a distorted image may look like. The centre

of distortion cd is shown, but the other parameters are not explicitly represented
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(2) the error on a displacement is the distortion gradient in the limit of small displacements,
(3) for a nonzero constant gradient, the greater the amplitude of the displacement, the greater the error.

With these remarks in mind and knowing that the movement of the grains is very erratic in a deforming granular
assembly, it is very important to correct the distortion of the images to obtain the best possible accuracy.
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