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We compare the probability density functions of normal forces in dry and wet granular systems from 3D
simulations by molecular dynamics and contact dynamics methods. While the strong forces are
characterized by a decreasing exponential distribution, we show that in the range of weak forces the force
distribution in a dry granular packing is sensitive to the anisotropy of the packing and the shape of the
particles. By means of a model of capillary cohesion, implemented as a force law expressing the capillary
force as a function of water volume and the distance between particles, we find that distributions are
exponential for both compressive and tensile forces. The particle pressures are shown to form a bi-
percolating structure.

Crown Copyright © 2008 Published by Elsevier B.V. All rights reserved.

1. Introduction

The complex rheology of dense granular materials reflects a
disordered microstructure with rich statistical properties. Granular
disorder and steric exclusions lead to an unexpectedly inhomoge-
neous distribution of contact forces under quasistatic loading [1–10].
These force inhomogeneities in granular assemblies were first
observed by means of photoelastic experiments [11,12]. The carbon
paper technique was used later to record the force prints at the
boundaries of a granular packing [3]. It was found that the forces have
a nearly decreasing exponential distribution. Numerical simulations
by the CD method provided detailed evidence for force chains, the
organization of the force network into strong and weak networks, and
the exponential distribution of strong forces [13,14]. Moreover, the
force probability density functions (pdfs) from simulations showed
that the weak forces (below the average force) in a sheared granular
system have a nearly uniform or decreasing power law shape in
agreement with refined carbon paper experiments [2,5].

Further experiments and numerical simulations have shown that
the exponential falloff of strong forces is a robust feature of force
distribution in granular media both in two and three dimensions. In
contrast, the weak forces are sensitive to the details of the preparation
method or the internal state of the packing [9,10,15,16]. A remarkable
aspect of weak forces is the fact that their number does not vanish as
the force falls to zero [13,17]. Several theoretical models have been
proposed allowing to relate the exponential distribution of forces to
granular disorder combined with the condition of force balance for

each particle [1,18]. Recently, the force pdfs were derived for an
isotropic system of frictionless particles in two dimensions from a
statistical approach assuming a first shell approximation (one particle
with its contact neighbors) [17].

The presence of cohesive bonding between particles does not al-
ter the inhomogeneous aspect of forces as a result of the common
granular microstructure. However, in contrast to cohesionless media,
the distribution of weak compressive forces is affected by tensile
forces [19]. In wet granular media in the pendular state, the tensile
action of capillary bonds bridging the gaps between neighboring
particles gives rise to a network of self-equilibrated forces [20]. This
network is likely to control features such as particle aggregation and
the enhanced shear strength of wet granular media.

In this paper, we rely on 3D molecular dynamics and contact
dynamics simulations in order to compare the pdfs of normal forces in
different granular systems. After a brief introduction to the numerical
models, we focus on the influence of anisotropy and particle shape
on force distributions in cohesionless granular assemblies. Then, we
analyze force distributions in assemblies of spherical particles in
which capillary attraction between particles is implemented as a force
law expressing the capillary force as a function of the distance, water
volume, and particle diameters. Finally, we consider the distribution
of particle pressures and we show that they organize themselves as a
bi-percolating structure of negative and positive pressures.

2. Model description

The discrete element method (DEM) has been extensively used
since the pioneering work of Cundall and Strack for the simulation of
granular materials [21]. In this method, the equations of motion are
integrated for all particles by taking into account contact interactions
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between them. In its original version, commonly used also today, the
particles are treated as rigid elements but the interactions are mo-
deled by means of visco-elastic force laws expressed in terms of
the relative displacements between particles as in classical molecular
dynamics (MD) simulations. In these MD-type approaches, the sim-
ulation of mutual exclusions between particles requires a stiff re-
pulsive potential and thus high time resolution. In the same way, the
Coulomb law for dry friction needs to be ‘regularized’ such that the
friction force can be expressed as a mono-valued function of relative
tangential displacement.

The contact dynamics (CD) method, introduced later, provides an
alternative approach based on ‘nonsmooth’ formulation of mutual
exclusion and dry friction between particles [22,23]. In this method,
the equations of motion are expressed as differential inclusions and
the accelerations are replaced by velocity jumps. At a given time step,
all kinematic constraints implied by enduring contacts and possible
rolling of particles over one another are simultaneously taken into
account in order to determine all velocities and contact forces. In
the generic CD algorithm, an iterative process is used to solve this
problem. It consists of solving a single contact problem with all other
contact forces kept constant, and iteratively updating the forces until a
given convergence criterion is fulfilled. Due to the implicit time inte-
gration scheme inherent in the CD method, the solution is uncondi-
tionally stable [15,22,24,25]. The particle positions are updated from
the calculated particle velocities before a new detection of the con-
tacts between particles is performed.

Schematically, it can be said that the MD method is based on a
description of particle interactions in terms of force laws, i.e. bijective
force–displacement relations, whereas the CD method is based on a
formulation of kinematic constraints in terms of contact laws. Inde-
pendently of particle deformability, the impenetrability of the particles
and the Coulomb friction at the contact zones can be formulated in the
form of contact laws expressing the contact actions as set-valued
functions of particle positions. The uniqueness of the solution is not
guaranteed by CD approach for perfectly rigid particles in absolute
terms. However, by initializing each step of calculationwith the forces
calculated in the preceding step, the set of admissible solutions shrinks
to a small variability basically of the same order of magnitude as the
numerical resolution. We note that in the MD method this ‘force
history’ is by definition encoded in the particle positions.

Since the CD method handles the kinematic constraints without
resorting to force laws, the particles are often treated as perfectly rigid
although elastic moduli can be introduced in the same framework.

This is the case of the CD simulations carried out for the analysis of
force distributions in this paper. Hence, the only material parameter of
the simulated static packings by the CD method is the coefficient of
friction μ between the particles. On the other hand, the MD-generated
packings are characterized by normal and tangential stiffnesses kn and
kt as well as the coefficient of friction μ. The mean deformation of the
particles is given by the ratio p/kn of the average stress p to kn.

For our simulations of wet granular materials, we used the MD
method with spherical particles and a capillary force law. The total
normal force fn at each contact is the sum of a repulsive force fnr and an
attractive capillary force fn

c. The latter is a function of the liquid bond
parameters, namely the gap δn, the liquid bond volume Vb, the liquid
surface tension γs, and the particle–liquid–gas contact angle θ; see
inset in Fig. 1. The capillary force can be calculated by integrating the
Laplace–Young equation [26–29]. However, for efficient MD simula-
tions, we need an explicit expression of fnc as a function of the liquid
bond parameters.

We used an analytical form for the capillary force which is well
fitted by the data from direct integration of the Laplace–Young
equation both for polydisperse particles [30]. At leading order, the
capillary force f0 at contact, i.e. for δn≤0, is

f0 ¼ �j R; ð1Þ
where R is a length depending on the particle radii Ri and Rj and κ is
given by [31–33]

j ¼ 2kgs cos h: ð2Þ
A negative value of δn corresponds to an overlap between the
particles. The assumption is that the overlap is small compared to the
particle diameters. The data obtained from direct integration of the
Laplace–Young equation show that the geometric mean R ¼ ffiffiffiffiffiffiffiffiffi

RiRj
p

is
more suited than the harmonic mean 2RiRj/(Ri+Rj) proposed by
Derjaguin for polydisperse particles in the limit of small gaps (see
below) [34]. We also note that f0 in Eq. (1) is independent of the bond
liquid volume Vb.

The adhesion force f0 at contact is the highest level of the capillary
force. The latter declines as the gap δn increases. The capillary bridge is
stable as long as δnbδnmax, where δnmax is the debonding distance given
by [35]

dmax
n ¼ 1þ h

2

� �
V1=3
b : ð3Þ

Between these two limits, the capillary force falls off exponentially
with δn:

f cn ¼ f0e�dn=k; ð4Þ
where λ is a length scale which should be a function of Vb and the
particle radii. The asymmetry due to unequal particle sizes is taken into
account through a function of the ratio between particle radii. We set

r ¼ max Ri=Rj;Rj=Ri
� �

: ð5Þ

Dimensionally, a plausible expression of λ is

k ¼ c h rð Þ Vb

RV

� �1=2

; ð6Þ

where c is a constant and h is a function only of r. When introduced in
Eqs. (4) and (6), this form yields a nice fit for the capillary force
obtained from direct integration of the Laplace–Young equation by
setting R′=2RiRj / (Ri+Rj), h(r)= r−1/2 and c≃0.9.

Fig. 1 shows the plots of Eq. (4) for three different values of the
liquid volume Vb and size ratio r together with the corresponding data
from direct integration. The forces are normalized by κR and the
lengths by λ. The data collapse on the same plot, indicating again that

Fig.1. Scaled plot of the capillary force as a function of the gap between two particles for
different values of the local liquid volume Vb and size ratio r according to the model
proposed in this paper. Inset: Geometry of a capillary bridge.
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the force κR and the expression of λ in Eq. (6) characterize correctly
the behavior of the capillary bridge.

Finally, the capillary force can be expressed in the following form:

f cn ¼
�j R for dn b0
�j R e�dn=k for 0V dn V dmax

n
0 for dn N dmax

n

;

8<
: ð7Þ

with

k ¼ cffiffiffi
2

p 1=Ri þ 1=Rj

max Ri=Rj;Rj=Ri
� �Vb

( )1=2

: ð8Þ

In the simulations, the total liquid volume is distributed among all
eligible particle pairs (the pairs with a gap below the debonding
distance, including the contact points) in proportion to the reduced
diameter of each pair. We also assume that the particles are perfectly
wettable, i.e. θ=0. The choice of the water volume has no influence on
the value of the largest capillary force in the pendular state [36]. For
our simulations, we chose a gravimetric water content of 0.007 so that
the material is in the pendular state. The coefficient of friction is μ=0.4
for all simulations.

3. Dry granular media

We study the shapes of normal force distributions from numerical
simulations by CD andMDmethods in three dimensions with focus on
the effect of the numerical method, anisotropy and particle shape for
dry packings in this section and the capillary cohesion for wet pack-
ings in the next section. Different samples were prepared by isotropic
compaction and then deformed under triaxial loading in order to
obtain anisotropic packings. The numbers of particles and particle
shapes are given in Table 1 for different samples labeled from S1 to S7.
The particle size distributions are not the same in all samples but they

all represent rather weakly polydisperse distributions with a ratio of 2
between the largest and smallest particles.

Fig. 2 shows the pdfs of normal forces for two isotropic samples
simulated byMD and CDmethods (samples S1 and S4). The forces have
been normalized by the average force in each sample. Although the
two samples are not exactly identical, the two pdfs have the same
shape characterized by an exponential falloff for large forces, a small
peak for a force slightly below the average force and a finite value at
zero force. The position of the peak is not the same in the two
distributions but the exponents of the exponential falloff are the same
within statistical precision of the data:

P fnð Þ∝e�bfn=hfni; ð9Þ
with β≃1.4. This similarity between the distributions indicates that
the statics of a granular system is statistically robust with respect to
the numerical approach and, in particular, the small elastic deforma-
tion at contact points in MD simulations has negligible effect on the
inhomogeneity of the system. In other words, the physics of a static
granular packing can be approximated by considering undeformable

Table 1
Characteristics of various numerical samples

Sample Method Number Shape Wet Loading (Pa)

S1 CD 20,000 Spheres No Iso, 100
S2 CD 20,000 Spheres No Aniso, 100
S3 CD 20,000 Polyhedra No Iso, 100
S4 MD 8000 Spheres No Iso, 0
S5 MD 8000 Spheres No Iso, 100
S6 MD 8000 Spheres Yes Iso, 0
S7 MD 8000 Spheres Yes Iso, 100

Fig. 2. Probability density functions of normal forces in two isotropic samples of
spherical particles simulated by MD and CD methods.

Fig. 3. Probability density functions of normal forces in a sample of spherical particles
after isotropic compaction (isotropic state) and following triaxial compression
(anisotropic state).

Fig. 4. Probability density functions of normal forces in an isotropic sample of
polyhedral particles on log–linear and log–log scales.
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particles as in the CD method as far as the ratio p/kn of the confining
pressure p to the normal stiffness kn of the particles is small.

The observed shape of force pdfs is unique in two respects: (1) the
exponential part reflects the presence of very large forces in the
system often appearing in a correlated manner in the form of force
chains; (2) the nonvanishing category of weak forces, with a fraction
ofmore than 60% of contact forces below the average force, means that
the stability of force chains is ensured by a large number of van-
ishingly small forces [14,15]. The large number of contacts transmit-
ting very weak forces is a signature of the arching effect. These
features imply that the average force is not physically rich enough to
represent the whole spectrum of forces in a granular system.

Fig. 3 shows the normal force pdf in CD simulations for the same
system of spherical particles at the isotropic state (sample S1) and at
an anisotropic state (sample S2). The effect of anisotropy is to reinforce
the force inhomogeneity by increasing the relative densities of both
strong and weak forces [16,37,38]. However, the exponent β remains
nearly unchanged whereas the small peak near the average force
disappears and the distribution of weak forces tends to become nearly
uniform [15].

The distribution of weak forces is also dependent on particle
shapes and sizes. Fig. 4 shows the distribution of normal forces in a
sample of polyhedral particles (sample S3) in an isotropic state. We
again observe the exponential tail of strong forces together with a
decreasing power law distribution for weak forces. It seems thus that
the angular particle shape increases considerably the number of very
weak forces by enhancing the arching effect. The latter is also reflected
in the value of the exponent β reduced to 0.97 compared to 1.4 for
spherical particles. In this way, the force chains are stronger but less in
number [39].

4. Wet granular media

In this section, we consider force pdfs in a wet packing of spheres
for two samples simulated by the MD method for pm=0 Pa and for
pm=100 Pa (samples S6 and S7 in Table 1). The confined sample S7 was
obtained from isotropic compaction of awet packing initially prepared
with pm=0. The packing was then allowed to relax to equilibrium
under the action of the applied pressure. This level of confinement is
high compared to the reference pressure p0= f0 / 〈d〉 (pm/p0≃0.5), yet
not too high to mask fully the manifestations of capillary cohesion.

Fig. 5 shows the force networks in a narrow slice nearly three
particle diameters thick in both samples. The tensile and compressive
forces are represented by segments of different colors joining particle
centers. The line thickness is proportional to the force. As in dry
granular media, we observe a highly inhomogeneous distribution
both for tensile and compressive forces. The effect of external
compressive pressure is to reduce the fraction of tensile bonds. In
the unconfined sample, the bond coordination number z (average
number of bonds per particle) is ≃6.1 including nearly 2.97
compressive bonds and 3.13 tensile bonds. As we shall see below,
these wet samples involve also a large number of weak forces (fn≃0)
corresponding to the contacts where capillary attraction is balanced
by elastic repulsion, i.e. knδn+ f0≃0.

Fig. 6 displays the pdf of normal forces in tensile (negative) and
compressive (positive) ranges for sample S6 (pm=0 Pa). We observe
two nearly symmetrical parts decaying exponentially from the center:

P fnð Þ∝e�aw jfn j=f0 ; ð10Þ
with αw≃4 for both negative and positive forces, and f0=κRmax, where
Rmax is the largest particle radius. In contrast to dry granular media,
where the distribution deviates from a purely exponential behavior
for weak forces [15], here the exponential behavior extends to the
center of the distribution. The tensile range is cutoff at fn=− f0
corresponding to the largest capillary force. Although the confining

Fig. 5.Maps of tensile (green) and compressive (red) forces in a thin layer in samples S6
(pm=0 Pa) (a) and S7 (pm=100 Pa) (b). Line thickness is proportional to the magnitude of
the force. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Probability density function of normal forces normalized by the largest capillary
force f0 at zero confining pressure.
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stress is zero, positive forces as large as 2f0 can be found in the system.
We also observe in Fig. 6 a distinct peak centered on fn=0 which is the
average force for zero confining pressure. The presence of this peak,
resulting from the balance between capillary attraction and elastic
repulsion, suggests that a large number of weak forces play a special
role with respect to the statics and stability of wet granular materials.

Fig. 7 shows the pdf of normal forces in sample S7. The symmetry of
the distribution around fn=0 is nowbroken compared to the unconfined
case in Fig. 6. The distribution is roughly exponential for both tensile and
compressive forces but the exponents are different. In the same figure,
the pdf of normal forces in a samplewithout capillary cohesion is shown
(sample S5). We see that the exponent for compressive forces is nearly
the same as for the dry packing. Remark that all forces have been
normalized by f0 in both cases. Another feature of force distribution
observed in Fig. 7 is thepresence of adistinct peak centeredon zero force
which was observed also for the case of unconfined packing in Fig. 6.
Hence, this peak reflects a feature of force transmission inwet granular
materials that will be analyzed below.

5. Bi-percolating structure of self-stresses

In an unconfined assembly of dry rigid particles, no self-stresses
occur and the forces vanish at all contacts. However, we have seen that
the presence of liquid bonds in awet granular material induces tensile
and compressive forces although the average force is zero. In other
words, the grains keep together to form a self-sustained structure in
the absence of confining stresses. In general, various loading histories
such as consolidation or differential particle swelling can induce self-
stresses in a cohesive packing [19,40]. In our system, the self-stresses
appear during relaxation. This is obviously a consequence of the
tensile action of capillary bonds bridging the gaps between neighbor-
ing particles within the debonding distance. We focus here on the
structure of self-stresses induced by capillary bonds.

For a local description of self-stresses we need to characterize the
stress transmission at the particle scale as the smallest scale at which
the force balance condition is defined for rigid particles. Although the
stress tensor is by definition a macroscopic quantity, it can be shown
that an equivalent quantity σi, called ‘particle stress’, can be defined
for each particle i of a granular packing in static equilibrium
[20,41,42]:

sið Þab¼
1
Vi

X
jpi

f ija r
ij
b ; ð11Þ

where rij is the position of the contact point of the force fij of particle j
on particle i, and α and β design the Cartesian components. Vi is the

free volume of particle i, the sum of the particle volume and a fraction
of the pore space:

Vi ¼
kd3i
6m

; ð12Þ

where di is the particle diameter, and ν is the solid fraction of the
packing. The sum of particle stresses σi weighted by the correspond-
ing relative free volumes Vi/V tends to the Cauchy stress tensor as the
number of particles in a control volume V increases.

From the particle stresses we get particle pressures:

pi ¼
1
3

X3
a¼1

sið Þaa: ð13Þ

Each particle can take on positive or negative pressures according to
the forces exerted by neighboring particles. The pdf of particle
pressures is displayed in Fig. 8 for the unconfined sample. The
pressures have been normalized by a reference pressure p0= f0 / 〈d〉2.
The distribution is symmetric around and peaked on zero pressure,

Fig. 7. Probability density functions of normal forces normalized by the largest capillary
force f0 in the confined packings S7 (wet) and S5 (dry).

Fig. 8. Probability density function of particle pressures normalized by reference
pressure p0 (see text) in the unconfined wet packing.

Fig. 9. The unconfined wet packing with negative (white) and positive (black) particle
pressures.
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and each part is well fit by an exponential form. This symmetry in the
structure of self-stresses must be contrasted with the asymmetric
distribution of forces (Fig. 6) due to the cutoff on tensile forces.
Obviously, the exponential shape of particle pressure distributions
reflects statistically that of bond forces. This distribution extends to
the center pi=0.

Zero particle pressure corresponds to a state where a particle is
balanced under the combined action of tensile and compressive
forces. Such particle states are not marginal here and they reflect a
particular stress transmission in a wet packing. The positive and
negative particle pressures may form separate phases mixing together
at large scales or mix together at the particle scale. Fig. 9, displaying
the packing where the positive and negative pressures are repre-
sented in black andwhite, credits rather the first scenario. We observe
that the particles of either positive or negative pressure appear as two
separate phases each percolating throughout the system. The
morphology of each phase is approximately filamentary with variable
thickness and a large interface between them. A detailed analysis of
this structure shows that the particles at the interface between the
two phases have a weak pressure and the largest negative or positive
pressures are located at the heart of each phase [20].

6. Conclusion

In this paper, the pdfs of contact forces in granular media were
investigated by means of 3D discrete element simulations. Our data
from MD and CD methods for dry granular media were shown to be
consistent. The exponential shape of the pdfs is a robust feature of
strong forces. This was shown for spherical and polyhedral particles,
isotropic andanisotropic states, and for tensile and compressive forces in
wet granular assemblies. In contrast, the force pdfs in the range of weak
forces were found to depend on system parameters (taking different
shapes from a peaked distribution to a decreasing power law
distribution), but their common property is the nonzero pdf at zero
force. From this point of view, the force pdf at zero force can be
considered as a signature of force inhomogeneity. Isotropic packings
have the lowest degree of inhomogeneity. It increases with the
anisotropy of the packing both in structural (contact orientations) and
static (force magnitudes as a function of contact directions) terms. The
polyhedral particles present a high degree of force anisotropy and thus a
high degree of inhomogeneity reflected in the practically divergent pdf
of weak forces at zero force. For wet granular media with a
homogeneous distribution of liquid,we showed the nontrivial organiza-
tion of particle pressures in two separate percolating phases of tensile
and compressive particle pressures with an interphase at zero pressure.
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